Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubfval Structured version   Visualization version   GIF version

Theorem grpsubfval 17671
 Description: Group subtraction (division) operation. (Contributed by NM, 31-Mar-2014.) (Revised by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
grpsubval.b 𝐵 = (Base‘𝐺)
grpsubval.p + = (+g𝐺)
grpsubval.i 𝐼 = (invg𝐺)
grpsubval.m = (-g𝐺)
Assertion
Ref Expression
grpsubfval = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦
Allowed substitution hints:   (𝑥,𝑦)

Proof of Theorem grpsubfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpsubval.m . . 3 = (-g𝐺)
2 fveq2 6332 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 grpsubval.b . . . . . 6 𝐵 = (Base‘𝐺)
42, 3syl6eqr 2822 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
5 fveq2 6332 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
6 grpsubval.p . . . . . . 7 + = (+g𝐺)
75, 6syl6eqr 2822 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
8 eqidd 2771 . . . . . 6 (𝑔 = 𝐺𝑥 = 𝑥)
9 fveq2 6332 . . . . . . . 8 (𝑔 = 𝐺 → (invg𝑔) = (invg𝐺))
10 grpsubval.i . . . . . . . 8 𝐼 = (invg𝐺)
119, 10syl6eqr 2822 . . . . . . 7 (𝑔 = 𝐺 → (invg𝑔) = 𝐼)
1211fveq1d 6334 . . . . . 6 (𝑔 = 𝐺 → ((invg𝑔)‘𝑦) = (𝐼𝑦))
137, 8, 12oveq123d 6813 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)((invg𝑔)‘𝑦)) = (𝑥 + (𝐼𝑦)))
144, 4, 13mpt2eq123dv 6863 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
15 df-sbg 17634 . . . 4 -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
16 fvex 6342 . . . . . 6 (Base‘𝐺) ∈ V
173, 16eqeltri 2845 . . . . 5 𝐵 ∈ V
1817, 17mpt2ex 7396 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) ∈ V
1914, 15, 18fvmpt 6424 . . 3 (𝐺 ∈ V → (-g𝐺) = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
201, 19syl5eq 2816 . 2 (𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
21 fvprc 6326 . . . 4 𝐺 ∈ V → (-g𝐺) = ∅)
221, 21syl5eq 2816 . . 3 𝐺 ∈ V → = ∅)
23 fvprc 6326 . . . . . 6 𝐺 ∈ V → (Base‘𝐺) = ∅)
243, 23syl5eq 2816 . . . . 5 𝐺 ∈ V → 𝐵 = ∅)
25 mpt2eq12 6861 . . . . 5 ((𝐵 = ∅ ∧ 𝐵 = ∅) → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + (𝐼𝑦))))
2624, 24, 25syl2anc 565 . . . 4 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + (𝐼𝑦))))
27 mpt20 6871 . . . 4 (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ (𝑥 + (𝐼𝑦))) = ∅
2826, 27syl6eq 2820 . . 3 𝐺 ∈ V → (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))) = ∅)
2922, 28eqtr4d 2807 . 2 𝐺 ∈ V → = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦))))
3020, 29pm2.61i 176 1 = (𝑥𝐵, 𝑦𝐵 ↦ (𝑥 + (𝐼𝑦)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1630   ∈ wcel 2144  Vcvv 3349  ∅c0 4061  ‘cfv 6031  (class class class)co 6792   ↦ cmpt2 6794  Basecbs 16063  +gcplusg 16148  invgcminusg 17630  -gcsg 17631 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-sbg 17634 This theorem is referenced by:  grpsubval  17672  grpsubf  17701  grpsubpropd  17727  grpsubpropd2  17728  tgpsubcn  22113  tngtopn  22673
 Copyright terms: Public domain W3C validator