Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubeq0 Structured version   Visualization version   GIF version

Theorem grpsubeq0 17709
 Description: If the difference between two group elements is zero, they are equal. (subeq0 10509 analog.) (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubid.b 𝐵 = (Base‘𝐺)
grpsubid.o 0 = (0g𝐺)
grpsubid.m = (-g𝐺)
Assertion
Ref Expression
grpsubeq0 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) = 0𝑋 = 𝑌))

Proof of Theorem grpsubeq0
StepHypRef Expression
1 grpsubid.b . . . . 5 𝐵 = (Base‘𝐺)
2 eqid 2771 . . . . 5 (+g𝐺) = (+g𝐺)
3 eqid 2771 . . . . 5 (invg𝐺) = (invg𝐺)
4 grpsubid.m . . . . 5 = (-g𝐺)
51, 2, 3, 4grpsubval 17673 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
653adant1 1124 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
76eqeq1d 2773 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) = 0 ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = 0 ))
8 simp1 1130 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
91, 3grpinvcl 17675 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
1093adant2 1125 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
11 simp2 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
12 grpsubid.o . . . 4 0 = (0g𝐺)
131, 2, 12, 3grpinvid2 17679 . . 3 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝑌) ∈ 𝐵𝑋𝐵) → (((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = 0 ))
148, 10, 11, 13syl3anc 1476 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑋 ↔ (𝑋(+g𝐺)((invg𝐺)‘𝑌)) = 0 ))
151, 3grpinvinv 17690 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑌)
16153adant2 1125 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑌)
1716eqeq1d 2773 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑋𝑌 = 𝑋))
18 eqcom 2778 . . 3 (𝑌 = 𝑋𝑋 = 𝑌)
1917, 18syl6bb 276 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (((invg𝐺)‘((invg𝐺)‘𝑌)) = 𝑋𝑋 = 𝑌))
207, 14, 193bitr2d 296 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) = 0𝑋 = 𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  ‘cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  0gc0g 16308  Grpcgrp 17630  invgcminusg 17631  -gcsg 17632 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-sbg 17635 This theorem is referenced by:  ghmeqker  17895  ghmf1  17897  odcong  18175  subgdisj1  18311  dprdf11  18630  kerf1hrm  18953  lmodsubeq0  19132  lvecvscan2  19325  ip2eq  20215  mdetuni0  20645  tgphaus  22140  nrmmetd  22599  ply1divmo  24115  dvdsq1p  24140  dvdsr1p  24141  ply1remlem  24142  ig1peu  24151  dchr2sum  25219  eqlkr  34908  hdmap11  37658  hdmapinvlem4  37731  idomrootle  38299  lidldomn1  42449
 Copyright terms: Public domain W3C validator