![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version |
Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
3 | 1, 2 | grpsubf 17695 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
4 | fovrn 6969 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
5 | 3, 4 | syl3an1 1167 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 × cxp 5264 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 Grpcgrp 17623 -gcsg 17625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-minusg 17627 df-sbg 17628 |
This theorem is referenced by: grpsubsub 17705 grpsubsub4 17709 grpnpncan 17711 grpnnncan2 17713 dfgrp3 17715 nsgconj 17828 nsgacs 17831 nsgid 17841 ghmnsgpreima 17886 ghmeqker 17888 ghmf1 17890 conjghm 17892 conjnmz 17895 conjnmzb 17896 sylow3lem2 18243 abladdsub4 18419 abladdsub 18420 ablpncan3 18422 ablsubsub4 18424 ablpnpcan 18425 ablnnncan 18428 ablnnncan1 18429 telgsumfzslem 18585 telgsumfzs 18586 telgsums 18590 lmodvsubcl 19110 lvecvscan2 19314 coe1subfv 19838 evl1subd 19908 ipsubdir 20189 ipsubdi 20190 ip2subdi 20191 dmatsubcl 20506 scmatsubcl 20525 mdetunilem9 20628 mdetuni0 20629 chmatcl 20835 chpmat1d 20843 chpdmatlem1 20845 chpscmat 20849 chpidmat 20854 chfacfisf 20861 cpmadugsumlemF 20883 cpmidgsum2 20886 tgpconncomp 22117 ghmcnp 22119 nrmmetd 22580 ngpds2 22611 ngpds3 22613 isngp4 22617 nmsub 22628 nm2dif 22630 nmtri2 22632 subgngp 22640 ngptgp 22641 nrgdsdi 22670 nrgdsdir 22671 nlmdsdi 22686 nlmdsdir 22687 nrginvrcnlem 22696 nmods 22749 tchcphlem1 23234 tchcph 23236 cphipval2 23240 4cphipval2 23241 cphipval 23242 ipcnlem2 23243 deg1sublt 24069 ply1divmo 24094 ply1divex 24095 r1pcl 24116 r1pid 24118 ply1remlem 24121 ig1peu 24130 dchr2sum 25197 lgsqrlem2 25271 lgsqrlem3 25272 lgsqrlem4 25273 ttgcontlem1 25964 ogrpsublt 30031 archiabllem1a 30054 archiabllem2a 30057 archiabllem2c 30058 ornglmulle 30114 orngrmulle 30115 lclkrlem2m 37310 idomrootle 38275 lidldomn1 42431 linply1 42691 |
Copyright terms: Public domain | W3C validator |