![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpplusfo | Structured version Visualization version GIF version |
Description: The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.) |
Ref | Expression |
---|---|
grpplusf.1 | ⊢ 𝐵 = (Base‘𝐺) |
grpplusf.2 | ⊢ 𝐹 = (+𝑓‘𝐺) |
Ref | Expression |
---|---|
grpplusfo | ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 17636 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpplusf.1 | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpplusf.2 | . . 3 ⊢ 𝐹 = (+𝑓‘𝐺) | |
4 | 2, 3 | mndpfo 17521 | . 2 ⊢ (𝐺 ∈ Mnd → 𝐹:(𝐵 × 𝐵)–onto→𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 × cxp 5247 –onto→wfo 6029 ‘cfv 6031 Basecbs 16063 +𝑓cplusf 17446 Mndcmnd 17501 Grpcgrp 17629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fo 6037 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-1st 7314 df-2nd 7315 df-0g 16309 df-plusf 17448 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-grp 17632 |
This theorem is referenced by: resgrpplusfrn 17643 |
Copyright terms: Public domain | W3C validator |