Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinv2 Structured version   Visualization version   GIF version

Theorem grpoidinv2 27599
 Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1 𝑋 = ran 𝐺
grpoidval.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grpoidinv2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐺   𝑦,𝑈   𝑦,𝑋

Proof of Theorem grpoidinv2
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . . . . . 7 𝑋 = ran 𝐺
2 grpoidval.2 . . . . . . 7 𝑈 = (GId‘𝐺)
31, 2grpoidval 27597 . . . . . 6 (𝐺 ∈ GrpOp → 𝑈 = (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
41grpoideu 27593 . . . . . . 7 (𝐺 ∈ GrpOp → ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
5 riotacl2 6739 . . . . . . 7 (∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 → (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥})
64, 5syl 17 . . . . . 6 (𝐺 ∈ GrpOp → (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥})
73, 6eqeltrd 2803 . . . . 5 (𝐺 ∈ GrpOp → 𝑈 ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥})
8 simpll 807 . . . . . . . . . . 11 ((((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → (𝑢𝐺𝑥) = 𝑥)
98ralimi 3054 . . . . . . . . . 10 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
109rgenw 3026 . . . . . . . . 9 𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
1110a1i 11 . . . . . . . 8 (𝐺 ∈ GrpOp → ∀𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
121grpoidinv 27592 . . . . . . . 8 (𝐺 ∈ GrpOp → ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)))
1311, 12, 43jca 1379 . . . . . . 7 (𝐺 ∈ GrpOp → (∀𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ∧ ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
14 reupick2 4021 . . . . . . 7 (((∀𝑢𝑋 (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ∧ ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥) ∧ 𝑢𝑋) → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 ↔ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))))
1513, 14sylan 489 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑢𝑋) → (∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥 ↔ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))))
1615rabbidva 3292 . . . . 5 (𝐺 ∈ GrpOp → {𝑢𝑋 ∣ ∀𝑥𝑋 (𝑢𝐺𝑥) = 𝑥} = {𝑢𝑋 ∣ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))})
177, 16eleqtrd 2805 . . . 4 (𝐺 ∈ GrpOp → 𝑈 ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))})
18 oveq1 6772 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑢𝐺𝑥) = (𝑈𝐺𝑥))
1918eqeq1d 2726 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝑥) = 𝑥))
20 oveq2 6773 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑥𝐺𝑢) = (𝑥𝐺𝑈))
2120eqeq1d 2726 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑥𝐺𝑢) = 𝑥 ↔ (𝑥𝐺𝑈) = 𝑥))
2219, 21anbi12d 749 . . . . . . 7 (𝑢 = 𝑈 → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ↔ ((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥)))
23 eqeq2 2735 . . . . . . . . 9 (𝑢 = 𝑈 → ((𝑦𝐺𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑈))
24 eqeq2 2735 . . . . . . . . 9 (𝑢 = 𝑈 → ((𝑥𝐺𝑦) = 𝑢 ↔ (𝑥𝐺𝑦) = 𝑈))
2523, 24anbi12d 749 . . . . . . . 8 (𝑢 = 𝑈 → (((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢) ↔ ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))
2625rexbidv 3154 . . . . . . 7 (𝑢 = 𝑈 → (∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢) ↔ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))
2722, 26anbi12d 749 . . . . . 6 (𝑢 = 𝑈 → ((((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ↔ (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
2827ralbidv 3088 . . . . 5 (𝑢 = 𝑈 → (∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) ↔ ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
2928elrab 3469 . . . 4 (𝑈 ∈ {𝑢𝑋 ∣ ∀𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))} ↔ (𝑈𝑋 ∧ ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
3017, 29sylib 208 . . 3 (𝐺 ∈ GrpOp → (𝑈𝑋 ∧ ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈))))
3130simprd 482 . 2 (𝐺 ∈ GrpOp → ∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)))
32 oveq2 6773 . . . . . 6 (𝑥 = 𝐴 → (𝑈𝐺𝑥) = (𝑈𝐺𝐴))
33 id 22 . . . . . 6 (𝑥 = 𝐴𝑥 = 𝐴)
3432, 33eqeq12d 2739 . . . . 5 (𝑥 = 𝐴 → ((𝑈𝐺𝑥) = 𝑥 ↔ (𝑈𝐺𝐴) = 𝐴))
35 oveq1 6772 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐺𝑈) = (𝐴𝐺𝑈))
3635, 33eqeq12d 2739 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐺𝑈) = 𝑥 ↔ (𝐴𝐺𝑈) = 𝐴))
3734, 36anbi12d 749 . . . 4 (𝑥 = 𝐴 → (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ↔ ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)))
38 oveq2 6773 . . . . . . 7 (𝑥 = 𝐴 → (𝑦𝐺𝑥) = (𝑦𝐺𝐴))
3938eqeq1d 2726 . . . . . 6 (𝑥 = 𝐴 → ((𝑦𝐺𝑥) = 𝑈 ↔ (𝑦𝐺𝐴) = 𝑈))
40 oveq1 6772 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
4140eqeq1d 2726 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝐺𝑦) = 𝑈 ↔ (𝐴𝐺𝑦) = 𝑈))
4239, 41anbi12d 749 . . . . 5 (𝑥 = 𝐴 → (((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈) ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4342rexbidv 3154 . . . 4 (𝑥 = 𝐴 → (∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈) ↔ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4437, 43anbi12d 749 . . 3 (𝑥 = 𝐴 → ((((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)) ↔ (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))))
4544rspccva 3412 . 2 ((∀𝑥𝑋 (((𝑈𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑈) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑈 ∧ (𝑥𝐺𝑦) = 𝑈)) ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
4631, 45sylan 489 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103  ∀wral 3014  ∃wrex 3015  ∃!wreu 3016  {crab 3018  ran crn 5219  ‘cfv 6001  ℩crio 6725  (class class class)co 6765  GrpOpcgr 27573  GIdcgi 27574 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pr 5011  ax-un 7066 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-fo 6007  df-fv 6009  df-riota 6726  df-ov 6768  df-grpo 27577  df-gid 27578 This theorem is referenced by:  grpolid  27600  grporid  27601  grporcan  27602  grpoinveu  27603  grpoinv  27609
 Copyright terms: Public domain W3C validator