![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grpoeqdivid | Structured version Visualization version GIF version |
Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
grpeqdivid.1 | ⊢ 𝑋 = ran 𝐺 |
grpeqdivid.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpeqdivid.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpoeqdivid | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpeqdivid.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
2 | grpeqdivid.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
3 | grpeqdivid.2 | . . . . 5 ⊢ 𝑈 = (GId‘𝐺) | |
4 | 1, 2, 3 | grpodivid 27726 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 𝑈) |
5 | 4 | 3adant2 1126 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐷𝐵) = 𝑈) |
6 | oveq1 6821 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴𝐷𝐵) = (𝐵𝐷𝐵)) | |
7 | 6 | eqeq1d 2762 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝐴𝐷𝐵) = 𝑈 ↔ (𝐵𝐷𝐵) = 𝑈)) |
8 | 5, 7 | syl5ibrcom 237 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 → (𝐴𝐷𝐵) = 𝑈)) |
9 | oveq1 6821 | . . 3 ⊢ ((𝐴𝐷𝐵) = 𝑈 → ((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵)) | |
10 | 1, 2 | grponpcan 27727 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵)𝐺𝐵) = 𝐴) |
11 | 1, 3 | grpolid 27700 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
12 | 11 | 3adant2 1126 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐺𝐵) = 𝐵) |
13 | 10, 12 | eqeq12d 2775 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝐴𝐷𝐵)𝐺𝐵) = (𝑈𝐺𝐵) ↔ 𝐴 = 𝐵)) |
14 | 9, 13 | syl5ib 234 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 𝑈 → 𝐴 = 𝐵)) |
15 | 8, 14 | impbid 202 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ran crn 5267 ‘cfv 6049 (class class class)co 6814 GrpOpcgr 27673 GIdcgi 27674 /𝑔 cgs 27676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-grpo 27677 df-gid 27678 df-ginv 27679 df-gdiv 27680 |
This theorem is referenced by: grpokerinj 34023 dmncan1 34206 |
Copyright terms: Public domain | W3C validator |