![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpodivdiv | Structured version Visualization version GIF version |
Description: Double group division. (Contributed by NM, 24-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpodivdiv | ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 468 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐺 ∈ GrpOp) | |
2 | simpr1 1233 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
3 | grpdivf.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | grpdivf.3 | . . . . 5 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
5 | 3, 4 | grpodivcl 27733 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐷𝐶) ∈ 𝑋) |
6 | 5 | 3adant3r1 1197 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵𝐷𝐶) ∈ 𝑋) |
7 | eqid 2771 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
8 | 3, 7, 4 | grpodivval 27729 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ (𝐵𝐷𝐶) ∈ 𝑋) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺((inv‘𝐺)‘(𝐵𝐷𝐶)))) |
9 | 1, 2, 6, 8 | syl3anc 1476 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺((inv‘𝐺)‘(𝐵𝐷𝐶)))) |
10 | 3, 7, 4 | grpoinvdiv 27731 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((inv‘𝐺)‘(𝐵𝐷𝐶)) = (𝐶𝐷𝐵)) |
11 | 10 | 3adant3r1 1197 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((inv‘𝐺)‘(𝐵𝐷𝐶)) = (𝐶𝐷𝐵)) |
12 | 11 | oveq2d 6809 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐺((inv‘𝐺)‘(𝐵𝐷𝐶))) = (𝐴𝐺(𝐶𝐷𝐵))) |
13 | 9, 12 | eqtrd 2805 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷(𝐵𝐷𝐶)) = (𝐴𝐺(𝐶𝐷𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ran crn 5250 ‘cfv 6031 (class class class)co 6793 GrpOpcgr 27683 invcgn 27685 /𝑔 cgs 27686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-grpo 27687 df-gid 27688 df-ginv 27689 df-gdiv 27690 |
This theorem is referenced by: ablodivdiv 27747 |
Copyright terms: Public domain | W3C validator |