![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpodivcl | Structured version Visualization version GIF version |
Description: Closure of group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpodivcl | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdivf.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | grpdivf.3 | . . 3 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
3 | 1, 2 | grpodivf 27723 | . 2 ⊢ (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋) |
4 | fovrn 6971 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) | |
5 | 3, 4 | syl3an1 1167 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 × cxp 5265 ran crn 5268 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 GrpOpcgr 27674 /𝑔 cgs 27677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-1st 7335 df-2nd 7336 df-grpo 27678 df-gid 27679 df-ginv 27680 df-gdiv 27681 |
This theorem is referenced by: grpodivdiv 27725 ablomuldiv 27737 ablodivdiv4 27739 ablonnncan 27741 ablonnncan1 27743 ablo4pnp 34011 ghomdiv 34023 grpokerinj 34024 dmncan1 34207 |
Copyright terms: Public domain | W3C validator |