MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpn0 Structured version   Visualization version   GIF version

Theorem grpn0 17626
Description: A group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (Revised by Mario Carneiro, 2-Dec-2014.)
Assertion
Ref Expression
grpn0 (𝐺 ∈ Grp → 𝐺 ≠ ∅)

Proof of Theorem grpn0
StepHypRef Expression
1 eqid 2748 . . 3 (Base‘𝐺) = (Base‘𝐺)
21grpbn0 17623 . 2 (𝐺 ∈ Grp → (Base‘𝐺) ≠ ∅)
3 fveq2 6340 . . . 4 (𝐺 = ∅ → (Base‘𝐺) = (Base‘∅))
4 base0 16085 . . . 4 ∅ = (Base‘∅)
53, 4syl6eqr 2800 . . 3 (𝐺 = ∅ → (Base‘𝐺) = ∅)
65necon3i 2952 . 2 ((Base‘𝐺) ≠ ∅ → 𝐺 ≠ ∅)
72, 6syl 17 1 (𝐺 ∈ Grp → 𝐺 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1620  wcel 2127  wne 2920  c0 4046  cfv 6037  Basecbs 16030  Grpcgrp 17594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-iota 6000  df-fun 6039  df-fv 6045  df-riota 6762  df-ov 6804  df-slot 16034  df-base 16036  df-0g 16275  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597
This theorem is referenced by:  lactghmga  17995
  Copyright terms: Public domain W3C validator