![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpmnd | Structured version Visualization version GIF version |
Description: A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpmnd | ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2760 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2760 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | isgrp 17649 | . 2 ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎 ∈ (Base‘𝐺)∃𝑚 ∈ (Base‘𝐺)(𝑚(+g‘𝐺)𝑎) = (0g‘𝐺))) |
5 | 4 | simplbi 478 | 1 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 +gcplusg 16163 0gc0g 16322 Mndcmnd 17515 Grpcgrp 17643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6817 df-grp 17646 |
This theorem is referenced by: grpcl 17651 grpass 17652 grpideu 17654 grpplusf 17655 grpplusfo 17656 grpsgrp 17667 dfgrp2 17668 grpidcl 17671 grplid 17673 grprid 17674 dfgrp3 17735 prdsgrpd 17746 prdsinvgd 17747 ghmgrp 17760 mulgaddcom 17785 mulginvcom 17786 mulgz 17789 mulgdirlem 17793 mulgneg2 17796 mulgass 17800 issubg3 17833 subgacs 17850 ghmmhm 17891 0ghm 17895 pwsdiagghm 17909 cntzsubg 17989 oppggrp 18007 gsumccatsymgsn 18066 symggen 18110 symgtrinv 18112 psgnunilem5 18134 psgnunilem2 18135 psgnuni 18139 psgneldm2 18144 psgnfitr 18157 lsmass 18303 lsmcntzr 18313 pj1ghm 18336 frgpmhm 18398 frgpuplem 18405 frgpupf 18406 frgpup1 18408 isabl2 18421 isabld 18426 gsumzinv 18565 telgsumfzslem 18605 telgsumfzs 18606 dprdssv 18635 dprdfid 18636 dprdfadd 18639 dprdfeq0 18641 dprdlub 18645 dmdprdsplitlem 18656 dprddisj2 18658 dpjidcl 18677 pgpfac1lem3a 18695 pgpfaclem3 18702 ringmnd 18776 unitabl 18888 unitsubm 18890 lmodvsmmulgdi 19120 psgnghm 20148 dsmmsubg 20309 frlm0 20320 mdetunilem7 20646 istgp2 22116 symgtgp 22126 clmmulg 23121 dchrptlem3 25211 abliso 30026 isarchi3 30071 ofldchr 30144 reofld 30170 pwssplit4 38179 pwslnmlem2 38183 gicabl 38189 mendring 38282 c0ghm 42439 c0snghm 42444 lmodvsmdi 42691 lincvalsng 42733 lincvalsc0 42738 linc0scn0 42740 linc1 42742 lcoel0 42745 lincsum 42746 lincsumcl 42748 snlindsntor 42788 |
Copyright terms: Public domain | W3C validator |