![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version |
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 17630 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndlid 17512 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
6 | 1, 5 | sylan 489 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 0gc0g 16302 Mndcmnd 17495 Grpcgrp 17623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-riota 6774 df-ov 6816 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 |
This theorem is referenced by: grprcan 17656 grpid 17658 isgrpid2 17659 grprinv 17670 grpinvid1 17671 grpinvid2 17672 grpidinv2 17675 grpinvid 17677 grplcan 17678 grpasscan1 17679 grpidlcan 17682 grplmulf1o 17690 grpidssd 17692 grpinvadd 17694 grpinvval2 17699 grplactcnv 17719 imasgrp 17732 mulgaddcom 17765 mulgdirlem 17773 subg0 17801 issubg2 17810 issubg4 17814 0subg 17820 isnsg3 17829 nmzsubg 17836 ssnmz 17837 eqger 17845 eqgid 17847 qusgrp 17850 qus0 17853 ghmid 17867 conjghm 17892 conjnmz 17895 subgga 17933 cntzsubg 17969 sylow1lem2 18214 sylow2blem2 18236 sylow2blem3 18237 sylow3lem1 18242 lsmmod 18288 lsmdisj2 18295 pj1rid 18315 abladdsub4 18419 ablpncan2 18421 ablpnpcan 18425 ablnncan 18426 odadd1 18451 odadd2 18452 oddvdssubg 18458 dprdfadd 18619 pgpfac1lem3a 18675 ringlz 18787 ringrz 18788 isabvd 19022 lmod0vlid 19095 lmod0vs 19098 psr0lid 19597 mplsubglem 19636 mplcoe1 19667 evpmodpmf1o 20144 ocvlss 20218 lsmcss 20238 mdetunilem6 20625 mdetunilem9 20628 ghmcnp 22119 tgpt0 22123 qustgpopn 22124 mdegaddle 24033 ply1rem 24122 ogrpinvOLD 30024 ogrpinv0le 30025 ogrpaddltrbid 30030 ogrpinv0lt 30032 ogrpinvlt 30033 isarchi3 30050 archirngz 30052 archiabllem1b 30055 orngsqr 30113 ornglmulle 30114 orngrmulle 30115 ofldchr 30123 matunitlindflem1 33718 lfl0f 34859 lfladd0l 34864 lkrlss 34885 lkrin 34954 dvhgrp 36898 baerlem3lem1 37498 mapdh6bN 37528 hdmap1l6b 37603 hdmapinvlem3 37714 hdmapinvlem4 37715 hdmapglem7b 37722 rnglz 42394 |
Copyright terms: Public domain | W3C validator |