![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplactfval | Structured version Visualization version GIF version |
Description: The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.) |
Ref | Expression |
---|---|
grplact.1 | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
grplact.2 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
grplactfval | ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 6772 | . . 3 ⊢ (𝑔 = 𝐴 → (𝑔 + 𝑎) = (𝐴 + 𝑎)) | |
2 | 1 | mpteq2dv 4853 | . 2 ⊢ (𝑔 = 𝐴 → (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
3 | grplact.1 | . 2 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
4 | grplact.2 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
5 | fvex 6314 | . . . 4 ⊢ (Base‘𝐺) ∈ V | |
6 | 4, 5 | eqeltri 2799 | . . 3 ⊢ 𝑋 ∈ V |
7 | 6 | mptex 6602 | . 2 ⊢ (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎)) ∈ V |
8 | 2, 3, 7 | fvmpt 6396 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1596 ∈ wcel 2103 Vcvv 3304 ↦ cmpt 4837 ‘cfv 6001 (class class class)co 6765 Basecbs 15980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 |
This theorem is referenced by: grplactval 17639 grplactcnv 17640 eqglact 17767 eqgen 17769 tgplacthmeo 22029 tgpconncompeqg 22037 |
Copyright terms: Public domain | W3C validator |