![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvval | Structured version Visualization version GIF version |
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.) |
Ref | Expression |
---|---|
grpinvval.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvval.p | ⊢ + = (+g‘𝐺) |
grpinvval.o | ⊢ 0 = (0g‘𝐺) |
grpinvval.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvval | ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6698 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑦 + 𝑥) = (𝑦 + 𝑋)) | |
2 | 1 | eqeq1d 2653 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑦 + 𝑥) = 0 ↔ (𝑦 + 𝑋) = 0 )) |
3 | 2 | riotabidv 6653 | . 2 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 ) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
4 | grpinvval.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
5 | grpinvval.p | . . 3 ⊢ + = (+g‘𝐺) | |
6 | grpinvval.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
7 | grpinvval.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
8 | 4, 5, 6, 7 | grpinvfval 17507 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑥) = 0 )) |
9 | riotaex 6655 | . 2 ⊢ (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ V | |
10 | 3, 8, 9 | fvmpt 6321 | 1 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 ℩crio 6650 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 0gc0g 16147 invgcminusg 17470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-minusg 17473 |
This theorem is referenced by: grplinv 17515 isgrpinv 17519 xrsinvgval 29805 ringinvval 29920 |
Copyright terms: Public domain | W3C validator |