![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvfvi | Structured version Visualization version GIF version |
Description: The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
grpinvfvi.t | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfvi | ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfvi.t | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
2 | fvi 6409 | . . . 4 ⊢ (𝐺 ∈ V → ( I ‘𝐺) = 𝐺) | |
3 | 2 | fveq2d 6348 | . . 3 ⊢ (𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
4 | base0 16106 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
5 | eqid 2752 | . . . . . 6 ⊢ (invg‘∅) = (invg‘∅) | |
6 | 4, 5 | grpinvfn 17655 | . . . . 5 ⊢ (invg‘∅) Fn ∅ |
7 | fn0 6164 | . . . . 5 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
8 | 6, 7 | mpbi 220 | . . . 4 ⊢ (invg‘∅) = ∅ |
9 | fvprc 6338 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ( I ‘𝐺) = ∅) | |
10 | 9 | fveq2d 6348 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘∅)) |
11 | fvprc 6338 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = ∅) | |
12 | 8, 10, 11 | 3eqtr4a 2812 | . . 3 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
13 | 3, 12 | pm2.61i 176 | . 2 ⊢ (invg‘( I ‘𝐺)) = (invg‘𝐺) |
14 | 1, 13 | eqtr4i 2777 | 1 ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ∅c0 4050 I cid 5165 Fn wfn 6036 ‘cfv 6041 invgcminusg 17616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-slot 16055 df-base 16057 df-minusg 17619 |
This theorem is referenced by: deg1invg 24057 |
Copyright terms: Public domain | W3C validator |