![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvf | Structured version Visualization version GIF version |
Description: The group inversion operation is a function on the base set. (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
grpinvcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvcl.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvf | ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2651 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | eqid 2651 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | 1, 2, 3 | grpinveu 17503 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) |
5 | riotacl 6665 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ 𝐵) |
7 | grpinvcl.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
8 | 1, 2, 3, 7 | grpinvfval 17507 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
9 | 6, 8 | fmptd 6425 | 1 ⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃!wreu 2943 ⟶wf 5922 ‘cfv 5926 ℩crio 6650 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 0gc0g 16147 Grpcgrp 17469 invgcminusg 17470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 |
This theorem is referenced by: grpinvcl 17514 isgrpinv 17519 grpinvcnv 17530 grpinvf1o 17532 grp1inv 17570 pwsinvg 17575 pwssub 17576 oppginv 17835 invoppggim 17836 symgtrinv 17938 invghm 18285 gsumzinv 18391 dprdfinv 18464 grpvlinv 20249 grpvrinv 20250 mdetralt 20462 istgp2 21942 symgtgp 21952 subgtgp 21956 tgpconncomp 21963 prdstgpd 21975 tsmssub 21999 tsmsxplem1 22003 tlmtgp 22046 nrginvrcn 22543 |
Copyright terms: Public domain | W3C validator |