![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpcl | Structured version Visualization version GIF version |
Description: Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.) |
Ref | Expression |
---|---|
grpcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpcl.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
grpcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 17601 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpcl.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | 2, 3 | mndcl 17473 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
5 | 1, 4 | syl3an1 1496 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1620 ∈ wcel 2127 ‘cfv 6037 (class class class)co 6801 Basecbs 16030 +gcplusg 16114 Mndcmnd 17466 Grpcgrp 17594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-nul 4929 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-iota 6000 df-fv 6045 df-ov 6804 df-mgm 17414 df-sgrp 17456 df-mnd 17467 df-grp 17597 |
This theorem is referenced by: grprcan 17627 grprinv 17641 grplmulf1o 17661 grpinvadd 17665 grpsubf 17666 grpsubadd 17675 grpaddsubass 17677 grpnpcan 17679 grpsubsub4 17680 grppnpcan2 17681 dfgrp3 17686 grplactcnv 17690 imasgrp 17703 mulgcl 17731 mulgaddcomlem 17735 mulgdir 17745 subgcl 17776 grpissubg 17786 nsgacs 17802 nmzsubg 17807 nsgid 17812 eqger 17816 eqgcpbl 17820 qusgrp 17821 qusadd 17823 ghmrn 17845 idghm 17847 ghmpreima 17854 ghmnsgima 17856 ghmnsgpreima 17857 ghmf1o 17862 conjghm 17863 conjnmz 17866 qusghm 17869 gaid 17903 subgga 17904 gass 17905 gaorber 17912 gastacl 17913 gastacos 17914 cntzsubg 17940 galactghm 17994 lactghmga 17995 symgsssg 18058 symgfisg 18059 symggen 18061 sylow1lem2 18185 sylow2blem1 18206 sylow2blem2 18207 sylow2blem3 18208 sylow3lem1 18213 sylow3lem2 18214 subgdisj1 18275 ablsub4 18389 abladdsub4 18390 mulgdi 18403 mulgghm 18405 invghm 18410 ghmplusg 18420 odadd1 18422 odadd2 18423 odadd 18424 gex2abl 18425 gexexlem 18426 torsubg 18428 oddvdssubg 18429 frgpnabllem2 18448 ringacl 18749 ringpropd 18753 drngmcl 18933 abvtrivd 19013 idsrngd 19035 lmodacl 19047 lmodvacl 19050 lmodprop2d 19098 rmodislmod 19104 prdslmodd 19142 pwssplit2 19233 asclghm 19511 psraddcl 19556 mplind 19675 evlslem1 19688 evl1addd 19878 evpmodpmf1o 20115 scmataddcl 20495 mdetralt 20587 mdetunilem6 20596 opnsubg 22083 ghmcnp 22090 qustgpopn 22095 ngprcan 22586 ngpocelbl 22680 nmotri 22715 ncvspi 23127 cphipval2 23211 4cphipval2 23212 cphipval 23213 efsubm 24467 abvcxp 25474 ttgcontlem1 25935 abliso 29976 ogrpaddltbi 29999 ogrpaddltrbid 30001 ogrpinvlt 30004 archiabllem2a 30028 archiabllem2c 30029 archiabllem2b 30030 dvrdir 30070 matunitlindflem1 33687 gicabl 38140 isnumbasgrplem2 38145 mendlmod 38234 |
Copyright terms: Public domain | W3C validator |