![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > griedg0ssusgr | Structured version Visualization version GIF version |
Description: The class of all simple graphs is a superclass of the class of empty graphs represented as ordered pairs. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} |
Ref | Expression |
---|---|
griedg0ssusgr | ⊢ 𝑈 ⊆ USGraph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | griedg0prc.u | . . . . 5 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
2 | 1 | eleq2i 2722 | . . . 4 ⊢ (𝑔 ∈ 𝑈 ↔ 𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅}) |
3 | elopab 5012 | . . . 4 ⊢ (𝑔 ∈ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) | |
4 | 2, 3 | bitri 264 | . . 3 ⊢ (𝑔 ∈ 𝑈 ↔ ∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅)) |
5 | opex 4962 | . . . . . . . 8 ⊢ 〈𝑣, 𝑒〉 ∈ V | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ V) |
7 | vex 3234 | . . . . . . . . 9 ⊢ 𝑣 ∈ V | |
8 | vex 3234 | . . . . . . . . 9 ⊢ 𝑒 ∈ V | |
9 | opiedgfv 25932 | . . . . . . . . 9 ⊢ ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (iEdg‘〈𝑣, 𝑒〉) = 𝑒) | |
10 | 7, 8, 9 | mp2an 708 | . . . . . . . 8 ⊢ (iEdg‘〈𝑣, 𝑒〉) = 𝑒 |
11 | f0bi 6126 | . . . . . . . . 9 ⊢ (𝑒:∅⟶∅ ↔ 𝑒 = ∅) | |
12 | 11 | biimpi 206 | . . . . . . . 8 ⊢ (𝑒:∅⟶∅ → 𝑒 = ∅) |
13 | 10, 12 | syl5eq 2697 | . . . . . . 7 ⊢ (𝑒:∅⟶∅ → (iEdg‘〈𝑣, 𝑒〉) = ∅) |
14 | 6, 13 | usgr0e 26173 | . . . . . 6 ⊢ (𝑒:∅⟶∅ → 〈𝑣, 𝑒〉 ∈ USGraph) |
15 | 14 | adantl 481 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 〈𝑣, 𝑒〉 ∈ USGraph) |
16 | eleq1 2718 | . . . . . 6 ⊢ (𝑔 = 〈𝑣, 𝑒〉 → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) | |
17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → (𝑔 ∈ USGraph ↔ 〈𝑣, 𝑒〉 ∈ USGraph)) |
18 | 15, 17 | mpbird 247 | . . . 4 ⊢ ((𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
19 | 18 | exlimivv 1900 | . . 3 ⊢ (∃𝑣∃𝑒(𝑔 = 〈𝑣, 𝑒〉 ∧ 𝑒:∅⟶∅) → 𝑔 ∈ USGraph) |
20 | 4, 19 | sylbi 207 | . 2 ⊢ (𝑔 ∈ 𝑈 → 𝑔 ∈ USGraph) |
21 | 20 | ssriv 3640 | 1 ⊢ 𝑈 ⊆ USGraph |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 ∅c0 3948 〈cop 4216 {copab 4745 ⟶wf 5922 ‘cfv 5926 iEdgciedg 25920 USGraphcusgr 26089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fv 5934 df-2nd 7211 df-iedg 25922 df-usgr 26091 |
This theorem is referenced by: usgrprc 26203 |
Copyright terms: Public domain | W3C validator |