![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gneispace0nelrn2 | Structured version Visualization version GIF version |
Description: A generic neighborhood space has a non-empty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
Ref | Expression |
---|---|
gneispace.a | ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} |
Ref | Expression |
---|---|
gneispace0nelrn2 | ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) → (𝐹‘𝑃) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gneispace.a | . . . 4 ⊢ 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓∀𝑛 ∈ (𝑓‘𝑝)(𝑝 ∈ 𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛 ⊆ 𝑠 → 𝑠 ∈ (𝑓‘𝑝))))} | |
2 | 1 | gneispace0nelrn 38959 | . . 3 ⊢ (𝐹 ∈ 𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅) |
3 | fveq2 6354 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝐹‘𝑝) = (𝐹‘𝑃)) | |
4 | 3 | neeq1d 2992 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝐹‘𝑝) ≠ ∅ ↔ (𝐹‘𝑃) ≠ ∅)) |
5 | 4 | rspccv 3447 | . . 3 ⊢ (∀𝑝 ∈ dom 𝐹(𝐹‘𝑝) ≠ ∅ → (𝑃 ∈ dom 𝐹 → (𝐹‘𝑃) ≠ ∅)) |
6 | 2, 5 | syl 17 | . 2 ⊢ (𝐹 ∈ 𝐴 → (𝑃 ∈ dom 𝐹 → (𝐹‘𝑃) ≠ ∅)) |
7 | 6 | imp 444 | 1 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹) → (𝐹‘𝑃) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 {cab 2747 ≠ wne 2933 ∀wral 3051 ∖ cdif 3713 ⊆ wss 3716 ∅c0 4059 𝒫 cpw 4303 {csn 4322 dom cdm 5267 ⟶wf 6046 ‘cfv 6050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |