Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace0nelrn2 Structured version   Visualization version   GIF version

Theorem gneispace0nelrn2 38960
Description: A generic neighborhood space has a non-empty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
Assertion
Ref Expression
gneispace0nelrn2 ((𝐹𝐴𝑃 ∈ dom 𝐹) → (𝐹𝑃) ≠ ∅)
Distinct variable groups:   𝑛,𝐹,𝑝,𝑓   𝐹,𝑠,𝑓   𝑓,𝑛,𝑝   𝑃,𝑝,𝑛
Allowed substitution hints:   𝐴(𝑓,𝑛,𝑠,𝑝)   𝑃(𝑓,𝑠)

Proof of Theorem gneispace0nelrn2
StepHypRef Expression
1 gneispace.a . . . 4 𝐴 = {𝑓 ∣ (𝑓:dom 𝑓⟶(𝒫 (𝒫 dom 𝑓 ∖ {∅}) ∖ {∅}) ∧ ∀𝑝 ∈ dom 𝑓𝑛 ∈ (𝑓𝑝)(𝑝𝑛 ∧ ∀𝑠 ∈ 𝒫 dom 𝑓(𝑛𝑠𝑠 ∈ (𝑓𝑝))))}
21gneispace0nelrn 38959 . . 3 (𝐹𝐴 → ∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅)
3 fveq2 6354 . . . . 5 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
43neeq1d 2992 . . . 4 (𝑝 = 𝑃 → ((𝐹𝑝) ≠ ∅ ↔ (𝐹𝑃) ≠ ∅))
54rspccv 3447 . . 3 (∀𝑝 ∈ dom 𝐹(𝐹𝑝) ≠ ∅ → (𝑃 ∈ dom 𝐹 → (𝐹𝑃) ≠ ∅))
62, 5syl 17 . 2 (𝐹𝐴 → (𝑃 ∈ dom 𝐹 → (𝐹𝑃) ≠ ∅))
76imp 444 1 ((𝐹𝐴𝑃 ∈ dom 𝐹) → (𝐹𝑃) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2140  {cab 2747  wne 2933  wral 3051  cdif 3713  wss 3716  c0 4059  𝒫 cpw 4303  {csn 4322  dom cdm 5267  wf 6046  cfv 6050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-fv 6058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator