MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  glbval Structured version   Visualization version   GIF version

Theorem glbval 17044
Description: Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
glbval.b 𝐵 = (Base‘𝐾)
glbval.l = (le‘𝐾)
glbval.g 𝐺 = (glb‘𝐾)
glbval.p (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
glbva.k (𝜑𝐾𝑉)
glbval.ss (𝜑𝑆𝐵)
Assertion
Ref Expression
glbval (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝑦,𝐾,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐵(𝑦)   𝐺(𝑥,𝑦,𝑧)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem glbval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 glbval.b . . . . 5 𝐵 = (Base‘𝐾)
2 glbval.l . . . . 5 = (le‘𝐾)
3 glbval.g . . . . 5 𝐺 = (glb‘𝐾)
4 biid 251 . . . . 5 ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))
5 glbva.k . . . . . 6 (𝜑𝐾𝑉)
65adantr 480 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝐾𝑉)
71, 2, 3, 4, 6glbfval 17038 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝐺 = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))}))
87fveq1d 6231 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆))
9 glbval.p . . . . . 6 (𝜓 ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
10 simpr 476 . . . . . 6 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ dom 𝐺)
111, 2, 3, 9, 6, 10glbeu 17043 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → ∃!𝑥𝐵 𝜓)
12 raleq 3168 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑥 𝑦 ↔ ∀𝑦𝑆 𝑥 𝑦))
13 raleq 3168 . . . . . . . . . . . 12 (𝑠 = 𝑆 → (∀𝑦𝑠 𝑧 𝑦 ↔ ∀𝑦𝑆 𝑧 𝑦))
1413imbi1d 330 . . . . . . . . . . 11 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1514ralbidv 3015 . . . . . . . . . 10 (𝑠 = 𝑆 → (∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥) ↔ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥)))
1612, 15anbi12d 747 . . . . . . . . 9 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ (∀𝑦𝑆 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑧 𝑦𝑧 𝑥))))
1716, 9syl6bbr 278 . . . . . . . 8 (𝑠 = 𝑆 → ((∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ 𝜓))
1817reubidv 3156 . . . . . . 7 (𝑠 = 𝑆 → (∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)) ↔ ∃!𝑥𝐵 𝜓))
1918elabg 3383 . . . . . 6 (𝑆 ∈ dom 𝐺 → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} ↔ ∃!𝑥𝐵 𝜓))
2019adantl 481 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} ↔ ∃!𝑥𝐵 𝜓))
2111, 20mpbird 247 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})
22 fvres 6245 . . . 4 (𝑆 ∈ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))} → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆))
2321, 22syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → (((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) ↾ {𝑠 ∣ ∃!𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))})‘𝑆) = ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆))
24 glbval.ss . . . . . 6 (𝜑𝑆𝐵)
2524adantr 480 . . . . 5 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆𝐵)
26 fvex 6239 . . . . . . 7 (Base‘𝐾) ∈ V
271, 26eqeltri 2726 . . . . . 6 𝐵 ∈ V
2827elpw2 4858 . . . . 5 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
2925, 28sylibr 224 . . . 4 ((𝜑𝑆 ∈ dom 𝐺) → 𝑆 ∈ 𝒫 𝐵)
3017riotabidv 6653 . . . . 5 (𝑠 = 𝑆 → (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))) = (𝑥𝐵 𝜓))
31 eqid 2651 . . . . 5 (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥)))) = (𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))
32 riotaex 6655 . . . . 5 (𝑥𝐵 𝜓) ∈ V
3330, 31, 32fvmpt 6321 . . . 4 (𝑆 ∈ 𝒫 𝐵 → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
3429, 33syl 17 . . 3 ((𝜑𝑆 ∈ dom 𝐺) → ((𝑠 ∈ 𝒫 𝐵 ↦ (𝑥𝐵 (∀𝑦𝑠 𝑥 𝑦 ∧ ∀𝑧𝐵 (∀𝑦𝑠 𝑧 𝑦𝑧 𝑥))))‘𝑆) = (𝑥𝐵 𝜓))
358, 23, 343eqtrd 2689 . 2 ((𝜑𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
36 ndmfv 6256 . . . 4 𝑆 ∈ dom 𝐺 → (𝐺𝑆) = ∅)
3736adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = ∅)
381, 2, 3, 9, 5glbeldm 17041 . . . . . . 7 (𝜑 → (𝑆 ∈ dom 𝐺 ↔ (𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓)))
3938biimprd 238 . . . . . 6 (𝜑 → ((𝑆𝐵 ∧ ∃!𝑥𝐵 𝜓) → 𝑆 ∈ dom 𝐺))
4024, 39mpand 711 . . . . 5 (𝜑 → (∃!𝑥𝐵 𝜓𝑆 ∈ dom 𝐺))
4140con3dimp 456 . . . 4 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → ¬ ∃!𝑥𝐵 𝜓)
42 riotaund 6687 . . . 4 (¬ ∃!𝑥𝐵 𝜓 → (𝑥𝐵 𝜓) = ∅)
4341, 42syl 17 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝑥𝐵 𝜓) = ∅)
4437, 43eqtr4d 2688 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ dom 𝐺) → (𝐺𝑆) = (𝑥𝐵 𝜓))
4535, 44pm2.61dan 849 1 (𝜑 → (𝐺𝑆) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  {cab 2637  wral 2941  ∃!wreu 2943  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191   class class class wbr 4685  cmpt 4762  dom cdm 5143  cres 5145  cfv 5926  crio 6650  Basecbs 15904  lecple 15995  glbcglb 16990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-glb 17022
This theorem is referenced by:  glbcl  17045  glbprop  17046  meetval2  17070  isglbd  17164  tosglb  29798  glb0N  34798  glbconN  34981
  Copyright terms: Public domain W3C validator