Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glb0N Structured version   Visualization version   GIF version

Theorem glb0N 35002
Description: The greatest lower bound of the empty set is the unit element. (Contributed by NM, 5-Dec-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
glb0.g 𝐺 = (glb‘𝐾)
glb0.u 1 = (1.‘𝐾)
Assertion
Ref Expression
glb0N (𝐾 ∈ OP → (𝐺‘∅) = 1 )

Proof of Theorem glb0N
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2771 . . 3 (le‘𝐾) = (le‘𝐾)
3 glb0.g . . 3 𝐺 = (glb‘𝐾)
4 biid 251 . . 3 ((∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
5 id 22 . . 3 (𝐾 ∈ OP → 𝐾 ∈ OP)
6 0ss 4116 . . . 4 ∅ ⊆ (Base‘𝐾)
76a1i 11 . . 3 (𝐾 ∈ OP → ∅ ⊆ (Base‘𝐾))
81, 2, 3, 4, 5, 7glbval 17205 . 2 (𝐾 ∈ OP → (𝐺‘∅) = (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))))
9 glb0.u . . . 4 1 = (1.‘𝐾)
101, 9op1cl 34994 . . 3 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
11 ral0 4217 . . . . . . 7 𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦
1211a1bi 351 . . . . . 6 (𝑧(le‘𝐾)𝑥 ↔ (∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))
1312ralbii 3129 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥 ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))
14 ral0 4217 . . . . . 6 𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦
1514biantrur 520 . . . . 5 (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥) ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
1613, 15bitri 264 . . . 4 (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥 ↔ (∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)))
1710adantr 466 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾))
18 breq1 4789 . . . . . . . 8 (𝑧 = 1 → (𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
1918rspcv 3456 . . . . . . 7 ( 1 ∈ (Base‘𝐾) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
2017, 19syl 17 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥1 (le‘𝐾)𝑥))
211, 2, 9op1le 35001 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ( 1 (le‘𝐾)𝑥𝑥 = 1 ))
2220, 21sylibd 229 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥𝑥 = 1 ))
231, 2, 9ople1 35000 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧(le‘𝐾) 1 )
2423adantlr 694 . . . . . . . . 9 (((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → 𝑧(le‘𝐾) 1 )
2524ex 397 . . . . . . . 8 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → 𝑧(le‘𝐾) 1 ))
26 breq2 4790 . . . . . . . . 9 (𝑥 = 1 → (𝑧(le‘𝐾)𝑥𝑧(le‘𝐾) 1 ))
2726biimprcd 240 . . . . . . . 8 (𝑧(le‘𝐾) 1 → (𝑥 = 1𝑧(le‘𝐾)𝑥))
2825, 27syl6 35 . . . . . . 7 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑧 ∈ (Base‘𝐾) → (𝑥 = 1𝑧(le‘𝐾)𝑥)))
2928com23 86 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 1 → (𝑧 ∈ (Base‘𝐾) → 𝑧(le‘𝐾)𝑥)))
3029ralrimdv 3117 . . . . 5 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥 = 1 → ∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥))
3122, 30impbid 202 . . . 4 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → (∀𝑧 ∈ (Base‘𝐾)𝑧(le‘𝐾)𝑥𝑥 = 1 ))
3216, 31syl5bbr 274 . . 3 ((𝐾 ∈ OP ∧ 𝑥 ∈ (Base‘𝐾)) → ((∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥)) ↔ 𝑥 = 1 ))
3310, 32riota5 6780 . 2 (𝐾 ∈ OP → (𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑥(le‘𝐾)𝑦 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ ∅ 𝑧(le‘𝐾)𝑦𝑧(le‘𝐾)𝑥))) = 1 )
348, 33eqtrd 2805 1 (𝐾 ∈ OP → (𝐺‘∅) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  wss 3723  c0 4063   class class class wbr 4786  cfv 6031  crio 6753  Basecbs 16064  lecple 16156  glbcglb 17151  1.cp1 17246  OPcops 34981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-preset 17136  df-poset 17154  df-lub 17182  df-glb 17183  df-p1 17248  df-oposet 34985
This theorem is referenced by:  pmapglb2N  35579  pmapglb2xN  35580
  Copyright terms: Public domain W3C validator