Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimfn Structured version   Visualization version   GIF version

Theorem gimfn 17911
 Description: The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
gimfn GrpIso Fn (Grp × Grp)

Proof of Theorem gimfn
Dummy variables 𝑔 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-gim 17909 . 2 GrpIso = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)})
2 ovex 6827 . . 3 (𝑠 GrpHom 𝑡) ∈ V
32rabex 4947 . 2 {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)} ∈ V
41, 3fnmpt2i 7393 1 GrpIso Fn (Grp × Grp)
 Colors of variables: wff setvar class Syntax hints:  {crab 3065   × cxp 5248   Fn wfn 6025  –1-1-onto→wf1o 6029  ‘cfv 6030  (class class class)co 6796  Basecbs 16064  Grpcgrp 17630   GrpHom cghm 17865   GrpIso cgim 17907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-gim 17909 This theorem is referenced by:  brgic  17919  gicer  17926
 Copyright terms: Public domain W3C validator