MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gimcnv Structured version   Visualization version   GIF version

Theorem gimcnv 17930
Description: The converse of a bijective group homomorphism is a bijective group homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
gimcnv (𝐹 ∈ (𝑆 GrpIso 𝑇) → 𝐹 ∈ (𝑇 GrpIso 𝑆))

Proof of Theorem gimcnv
StepHypRef Expression
1 eqid 2760 . . . . . . 7 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2760 . . . . . . 7 (Base‘𝑇) = (Base‘𝑇)
31, 2ghmf 17885 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
4 frel 6211 . . . . . . 7 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → Rel 𝐹)
5 dfrel2 5741 . . . . . . 7 (Rel 𝐹𝐹 = 𝐹)
64, 5sylib 208 . . . . . 6 (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 = 𝐹)
73, 6syl 17 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 = 𝐹)
8 id 22 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
97, 8eqeltrd 2839 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
109anim2i 594 . . 3 ((𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
1110ancoms 468 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → (𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
12 isgim2 17928 . 2 (𝐹 ∈ (𝑆 GrpIso 𝑇) ↔ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)))
13 isgim2 17928 . 2 (𝐹 ∈ (𝑇 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑇 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)))
1411, 12, 133imtr4i 281 1 (𝐹 ∈ (𝑆 GrpIso 𝑇) → 𝐹 ∈ (𝑇 GrpIso 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  ccnv 5265  Rel wrel 5271  wf 6045  cfv 6049  (class class class)co 6814  Basecbs 16079   GrpHom cghm 17878   GrpIso cgim 17920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-ghm 17879  df-gim 17922
This theorem is referenced by:  gicsym  17937  reloggim  24565  abliso  30026
  Copyright terms: Public domain W3C validator