![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gictr | Structured version Visualization version GIF version |
Description: Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
gictr | ⊢ ((𝑅 ≃𝑔 𝑆 ∧ 𝑆 ≃𝑔 𝑇) → 𝑅 ≃𝑔 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 17912 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | brgic 17912 | . 2 ⊢ (𝑆 ≃𝑔 𝑇 ↔ (𝑆 GrpIso 𝑇) ≠ ∅) | |
3 | n0 4074 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
4 | n0 4074 | . . 3 ⊢ ((𝑆 GrpIso 𝑇) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)) | |
5 | eeanv 2327 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) ↔ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇))) | |
6 | gimco 17911 | . . . . . . 7 ⊢ ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → (𝑔 ∘ 𝑓) ∈ (𝑅 GrpIso 𝑇)) | |
7 | brgici 17913 | . . . . . . 7 ⊢ ((𝑔 ∘ 𝑓) ∈ (𝑅 GrpIso 𝑇) → 𝑅 ≃𝑔 𝑇) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → 𝑅 ≃𝑔 𝑇) |
9 | 8 | ancoms 468 | . . . . 5 ⊢ ((𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅 ≃𝑔 𝑇) |
10 | 9 | exlimivv 2009 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅 ≃𝑔 𝑇) |
11 | 5, 10 | sylbir 225 | . . 3 ⊢ ((∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅 ≃𝑔 𝑇) |
12 | 3, 4, 11 | syl2anb 497 | . 2 ⊢ (((𝑅 GrpIso 𝑆) ≠ ∅ ∧ (𝑆 GrpIso 𝑇) ≠ ∅) → 𝑅 ≃𝑔 𝑇) |
13 | 1, 2, 12 | syl2anb 497 | 1 ⊢ ((𝑅 ≃𝑔 𝑆 ∧ 𝑆 ≃𝑔 𝑇) → 𝑅 ≃𝑔 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1853 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 class class class wbr 4804 ∘ ccom 5270 (class class class)co 6813 GrpIso cgim 17900 ≃𝑔 cgic 17901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-1o 7729 df-map 8025 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-grp 17626 df-ghm 17859 df-gim 17902 df-gic 17903 |
This theorem is referenced by: gicer 17919 cyggic 20123 |
Copyright terms: Public domain | W3C validator |