MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gictr Structured version   Visualization version   GIF version

Theorem gictr 17918
Description: Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gictr ((𝑅𝑔 𝑆𝑆𝑔 𝑇) → 𝑅𝑔 𝑇)

Proof of Theorem gictr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 17912 . 2 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 brgic 17912 . 2 (𝑆𝑔 𝑇 ↔ (𝑆 GrpIso 𝑇) ≠ ∅)
3 n0 4074 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆))
4 n0 4074 . . 3 ((𝑆 GrpIso 𝑇) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇))
5 eeanv 2327 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) ↔ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)))
6 gimco 17911 . . . . . . 7 ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → (𝑔𝑓) ∈ (𝑅 GrpIso 𝑇))
7 brgici 17913 . . . . . . 7 ((𝑔𝑓) ∈ (𝑅 GrpIso 𝑇) → 𝑅𝑔 𝑇)
86, 7syl 17 . . . . . 6 ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → 𝑅𝑔 𝑇)
98ancoms 468 . . . . 5 ((𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅𝑔 𝑇)
109exlimivv 2009 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅𝑔 𝑇)
115, 10sylbir 225 . . 3 ((∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅𝑔 𝑇)
123, 4, 11syl2anb 497 . 2 (((𝑅 GrpIso 𝑆) ≠ ∅ ∧ (𝑆 GrpIso 𝑇) ≠ ∅) → 𝑅𝑔 𝑇)
131, 2, 12syl2anb 497 1 ((𝑅𝑔 𝑆𝑆𝑔 𝑇) → 𝑅𝑔 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wex 1853  wcel 2139  wne 2932  c0 4058   class class class wbr 4804  ccom 5270  (class class class)co 6813   GrpIso cgim 17900  𝑔 cgic 17901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-1st 7333  df-2nd 7334  df-1o 7729  df-map 8025  df-0g 16304  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-ghm 17859  df-gim 17902  df-gic 17903
This theorem is referenced by:  gicer  17919  cyggic  20123
  Copyright terms: Public domain W3C validator