![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicsym | Structured version Visualization version GIF version |
Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
gicsym | ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 17758 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | n0 3964 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
3 | gimcnv 17756 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → ◡𝑓 ∈ (𝑆 GrpIso 𝑅)) | |
4 | brgici 17759 | . . . . 5 ⊢ (◡𝑓 ∈ (𝑆 GrpIso 𝑅) → 𝑆 ≃𝑔 𝑅) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ≃𝑔 𝑅) |
6 | 5 | exlimiv 1898 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ≃𝑔 𝑅) |
7 | 2, 6 | sylbi 207 | . 2 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝑆 ≃𝑔 𝑅) |
8 | 1, 7 | sylbi 207 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 class class class wbr 4685 ◡ccnv 5142 (class class class)co 6690 GrpIso cgim 17746 ≃𝑔 cgic 17747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-1o 7605 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-ghm 17705 df-gim 17748 df-gic 17749 |
This theorem is referenced by: gicer 17765 cygznlem3 19966 cygth 19968 cyggic 19969 |
Copyright terms: Public domain | W3C validator |