![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicref | Structured version Visualization version GIF version |
Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
gicref | ⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | 1 | idghm 17883 | . . 3 ⊢ (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)) |
3 | cnvresid 6107 | . . . 4 ⊢ ◡( I ↾ (Base‘𝑅)) = ( I ↾ (Base‘𝑅)) | |
4 | 3, 2 | syl5eqel 2854 | . . 3 ⊢ (𝑅 ∈ Grp → ◡( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅)) |
5 | isgim2 17915 | . . 3 ⊢ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) ↔ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅) ∧ ◡( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpHom 𝑅))) | |
6 | 2, 4, 5 | sylanbrc 572 | . 2 ⊢ (𝑅 ∈ Grp → ( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅)) |
7 | brgici 17920 | . 2 ⊢ (( I ↾ (Base‘𝑅)) ∈ (𝑅 GrpIso 𝑅) → 𝑅 ≃𝑔 𝑅) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 class class class wbr 4787 I cid 5157 ◡ccnv 5249 ↾ cres 5252 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 Grpcgrp 17630 GrpHom cghm 17865 GrpIso cgim 17907 ≃𝑔 cgic 17908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-1o 7717 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-ghm 17866 df-gim 17909 df-gic 17910 |
This theorem is referenced by: gicer 17926 |
Copyright terms: Public domain | W3C validator |