![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > giclcl | Structured version Visualization version GIF version |
Description: Isomorphism implies the left side is a group. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
giclcl | ⊢ (𝑅 ≃𝑔 𝑆 → 𝑅 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 17919 | . . 3 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | n0 4078 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
3 | 1, 2 | bitri 264 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) |
4 | gimghm 17914 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓 ∈ (𝑅 GrpHom 𝑆)) | |
5 | ghmgrp1 17870 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ∈ Grp) |
7 | 6 | exlimiv 2010 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ∈ Grp) |
8 | 3, 7 | sylbi 207 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝑅 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1852 ∈ wcel 2145 ≠ wne 2943 ∅c0 4063 class class class wbr 4786 (class class class)co 6793 Grpcgrp 17630 GrpHom cghm 17865 GrpIso cgim 17907 ≃𝑔 cgic 17908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-1o 7713 df-ghm 17866 df-gim 17909 df-gic 17910 |
This theorem is referenced by: gicer 17926 |
Copyright terms: Public domain | W3C validator |