![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicer | Structured version Visualization version GIF version |
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
Ref | Expression |
---|---|
gicer | ⊢ ≃𝑔 Er Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-gic 17923 | . . . 4 ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1𝑜)) | |
2 | cnvimass 5643 | . . . . 5 ⊢ (◡ GrpIso “ (V ∖ 1𝑜)) ⊆ dom GrpIso | |
3 | gimfn 17924 | . . . . . 6 ⊢ GrpIso Fn (Grp × Grp) | |
4 | fndm 6151 | . . . . . 6 ⊢ ( GrpIso Fn (Grp × Grp) → dom GrpIso = (Grp × Grp)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ dom GrpIso = (Grp × Grp) |
6 | 2, 5 | sseqtri 3778 | . . . 4 ⊢ (◡ GrpIso “ (V ∖ 1𝑜)) ⊆ (Grp × Grp) |
7 | 1, 6 | eqsstri 3776 | . . 3 ⊢ ≃𝑔 ⊆ (Grp × Grp) |
8 | relxp 5283 | . . 3 ⊢ Rel (Grp × Grp) | |
9 | relss 5363 | . . 3 ⊢ ( ≃𝑔 ⊆ (Grp × Grp) → (Rel (Grp × Grp) → Rel ≃𝑔 )) | |
10 | 7, 8, 9 | mp2 9 | . 2 ⊢ Rel ≃𝑔 |
11 | gicsym 17937 | . 2 ⊢ (𝑥 ≃𝑔 𝑦 → 𝑦 ≃𝑔 𝑥) | |
12 | gictr 17938 | . 2 ⊢ ((𝑥 ≃𝑔 𝑦 ∧ 𝑦 ≃𝑔 𝑧) → 𝑥 ≃𝑔 𝑧) | |
13 | gicref 17934 | . . 3 ⊢ (𝑥 ∈ Grp → 𝑥 ≃𝑔 𝑥) | |
14 | giclcl 17935 | . . 3 ⊢ (𝑥 ≃𝑔 𝑥 → 𝑥 ∈ Grp) | |
15 | 13, 14 | impbii 199 | . 2 ⊢ (𝑥 ∈ Grp ↔ 𝑥 ≃𝑔 𝑥) |
16 | 10, 11, 12, 15 | iseri 7940 | 1 ⊢ ≃𝑔 Er Grp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∖ cdif 3712 ⊆ wss 3715 class class class wbr 4804 × cxp 5264 ◡ccnv 5265 dom cdm 5266 “ cima 5269 Rel wrel 5271 Fn wfn 6044 1𝑜c1o 7723 Er wer 7910 Grpcgrp 17643 GrpIso cgim 17920 ≃𝑔 cgic 17921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-1o 7730 df-er 7913 df-map 8027 df-0g 16324 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-grp 17646 df-ghm 17879 df-gim 17922 df-gic 17923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |