Step | Hyp | Ref
| Expression |
1 | | nsgsubg 17833 |
. . 3
⊢ (𝑉 ∈ (NrmSGrp‘𝑇) → 𝑉 ∈ (SubGrp‘𝑇)) |
2 | | ghmpreima 17889 |
. . 3
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) |
3 | 1, 2 | sylan2 572 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) |
4 | | ghmgrp1 17869 |
. . . . . 6
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
5 | 4 | ad2antrr 697 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑆 ∈ Grp) |
6 | | simprl 746 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑥 ∈ (Base‘𝑆)) |
7 | | simprr 748 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑦 ∈ (◡𝐹 “ 𝑉)) |
8 | | simpll 742 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
9 | | eqid 2770 |
. . . . . . . . . . . 12
⊢
(Base‘𝑆) =
(Base‘𝑆) |
10 | | eqid 2770 |
. . . . . . . . . . . 12
⊢
(Base‘𝑇) =
(Base‘𝑇) |
11 | 9, 10 | ghmf 17871 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
12 | 8, 11 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
13 | | ffn 6185 |
. . . . . . . . . 10
⊢ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) → 𝐹 Fn (Base‘𝑆)) |
14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝐹 Fn (Base‘𝑆)) |
15 | | elpreima 6480 |
. . . . . . . . 9
⊢ (𝐹 Fn (Base‘𝑆) → (𝑦 ∈ (◡𝐹 “ 𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉))) |
16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑦 ∈ (◡𝐹 “ 𝑉) ↔ (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉))) |
17 | 7, 16 | mpbid 222 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑦 ∈ (Base‘𝑆) ∧ (𝐹‘𝑦) ∈ 𝑉)) |
18 | 17 | simpld 476 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑦 ∈ (Base‘𝑆)) |
19 | | eqid 2770 |
. . . . . . 7
⊢
(+g‘𝑆) = (+g‘𝑆) |
20 | 9, 19 | grpcl 17637 |
. . . . . 6
⊢ ((𝑆 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
21 | 5, 6, 18, 20 | syl3anc 1475 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆)) |
22 | | eqid 2770 |
. . . . . 6
⊢
(-g‘𝑆) = (-g‘𝑆) |
23 | 9, 22 | grpsubcl 17702 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆)) |
24 | 5, 21, 6, 23 | syl3anc 1475 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆)) |
25 | | eqid 2770 |
. . . . . . . 8
⊢
(-g‘𝑇) = (-g‘𝑇) |
26 | 9, 22, 25 | ghmsub 17875 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑥(+g‘𝑆)𝑦) ∈ (Base‘𝑆) ∧ 𝑥 ∈ (Base‘𝑆)) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
27 | 8, 21, 6, 26 | syl3anc 1475 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
28 | | eqid 2770 |
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) |
29 | 9, 19, 28 | ghmlin 17872 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
30 | 8, 6, 18, 29 | syl3anc 1475 |
. . . . . . 7
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘(𝑥(+g‘𝑆)𝑦)) = ((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))) |
31 | 30 | oveq1d 6807 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝐹‘(𝑥(+g‘𝑆)𝑦))(-g‘𝑇)(𝐹‘𝑥)) = (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
32 | 27, 31 | eqtrd 2804 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) = (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥))) |
33 | | simplr 744 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → 𝑉 ∈ (NrmSGrp‘𝑇)) |
34 | 12, 6 | ffvelrnd 6503 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘𝑥) ∈ (Base‘𝑇)) |
35 | 17 | simprd 477 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘𝑦) ∈ 𝑉) |
36 | 10, 28, 25 | nsgconj 17834 |
. . . . . 6
⊢ ((𝑉 ∈ (NrmSGrp‘𝑇) ∧ (𝐹‘𝑥) ∈ (Base‘𝑇) ∧ (𝐹‘𝑦) ∈ 𝑉) → (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥)) ∈ 𝑉) |
37 | 33, 34, 35, 36 | syl3anc 1475 |
. . . . 5
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (((𝐹‘𝑥)(+g‘𝑇)(𝐹‘𝑦))(-g‘𝑇)(𝐹‘𝑥)) ∈ 𝑉) |
38 | 32, 37 | eqeltrd 2849 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉) |
39 | | elpreima 6480 |
. . . . 5
⊢ (𝐹 Fn (Base‘𝑆) → (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉) ↔ (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉))) |
40 | 14, 39 | syl 17 |
. . . 4
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉) ↔ (((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (Base‘𝑆) ∧ (𝐹‘((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥)) ∈ 𝑉))) |
41 | 24, 38, 40 | mpbir2and 684 |
. . 3
⊢ (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (◡𝐹 “ 𝑉))) → ((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉)) |
42 | 41 | ralrimivva 3119 |
. 2
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (◡𝐹 “ 𝑉)((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉)) |
43 | 9, 19, 22 | isnsg3 17835 |
. 2
⊢ ((◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆) ↔ ((◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (◡𝐹 “ 𝑉)((𝑥(+g‘𝑆)𝑦)(-g‘𝑆)𝑥) ∈ (◡𝐹 “ 𝑉))) |
44 | 3, 42, 43 | sylanbrc 564 |
1
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆)) |