Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmmulg Structured version   Visualization version   GIF version

Theorem ghmmulg 17893
 Description: A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
ghmmulg.b 𝐵 = (Base‘𝐺)
ghmmulg.s · = (.g𝐺)
ghmmulg.t × = (.g𝐻)
Assertion
Ref Expression
ghmmulg ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))

Proof of Theorem ghmmulg
StepHypRef Expression
1 ghmmhm 17891 . . . . . 6 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹 ∈ (𝐺 MndHom 𝐻))
2 ghmmulg.b . . . . . . 7 𝐵 = (Base‘𝐺)
3 ghmmulg.s . . . . . . 7 · = (.g𝐺)
4 ghmmulg.t . . . . . . 7 × = (.g𝐻)
52, 3, 4mhmmulg 17804 . . . . . 6 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
61, 5syl3an1 1167 . . . . 5 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
763expa 1112 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℕ0) ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
87an32s 881 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
983adantl2 1173 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ 𝑁 ∈ ℕ0) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
10 simpl1 1228 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
1110, 1syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹 ∈ (𝐺 MndHom 𝐻))
12 nnnn0 11511 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
1312ad2antll 767 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
14 simpl3 1232 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑋𝐵)
152, 3, 4mhmmulg 17804 . . . . . . 7 ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ -𝑁 ∈ ℕ0𝑋𝐵) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1611, 13, 14, 15syl3anc 1477 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(-𝑁 · 𝑋)) = (-𝑁 × (𝐹𝑋)))
1716fveq2d 6357 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
18 ghmgrp1 17883 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
1910, 18syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐺 ∈ Grp)
20 nnz 11611 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
2120ad2antll 767 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
222, 3mulgcl 17780 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (-𝑁 · 𝑋) ∈ 𝐵)
2319, 21, 14, 22syl3anc 1477 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑁 · 𝑋) ∈ 𝐵)
24 eqid 2760 . . . . . . 7 (invg𝐺) = (invg𝐺)
25 eqid 2760 . . . . . . 7 (invg𝐻) = (invg𝐻)
262, 24, 25ghminv 17888 . . . . . 6 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (-𝑁 · 𝑋) ∈ 𝐵) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
2710, 23, 26syl2anc 696 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = ((invg𝐻)‘(𝐹‘(-𝑁 · 𝑋))))
28 ghmgrp2 17884 . . . . . . 7 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
2910, 28syl 17 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐻 ∈ Grp)
30 eqid 2760 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
312, 30ghmf 17885 . . . . . . . 8 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐹:𝐵⟶(Base‘𝐻))
3210, 31syl 17 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐹:𝐵⟶(Base‘𝐻))
3332, 14ffvelrnd 6524 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹𝑋) ∈ (Base‘𝐻))
3430, 4, 25mulgneg 17781 . . . . . 6 ((𝐻 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ (𝐹𝑋) ∈ (Base‘𝐻)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3529, 21, 33, 34syl3anc 1477 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = ((invg𝐻)‘(-𝑁 × (𝐹𝑋))))
3617, 27, 353eqtr4d 2804 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (--𝑁 × (𝐹𝑋)))
372, 3, 24mulgneg 17781 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑁 ∈ ℤ ∧ 𝑋𝐵) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
3819, 21, 14, 37syl3anc 1477 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = ((invg𝐺)‘(-𝑁 · 𝑋)))
39 simprl 811 . . . . . . . . 9 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4039recnd 10280 . . . . . . . 8 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
4140negnegd 10595 . . . . . . 7 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → --𝑁 = 𝑁)
4241oveq1d 6829 . . . . . 6 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 · 𝑋) = (𝑁 · 𝑋))
4338, 42eqtr3d 2796 . . . . 5 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((invg𝐺)‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋))
4443fveq2d 6357 . . . 4 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘((invg𝐺)‘(-𝑁 · 𝑋))) = (𝐹‘(𝑁 · 𝑋)))
4536, 44eqtr3d 2796 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝐹‘(𝑁 · 𝑋)))
4641oveq1d 6829 . . 3 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (--𝑁 × (𝐹𝑋)) = (𝑁 × (𝐹𝑋)))
4745, 46eqtr3d 2796 . 2 (((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
48 simp2 1132 . . 3 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → 𝑁 ∈ ℤ)
49 elznn0nn 11603 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
5048, 49sylib 208 . 2 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
519, 47, 50mpjaodan 862 1 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ⟶wf 6045  ‘cfv 6049  (class class class)co 6814  ℝcr 10147  -cneg 10479  ℕcn 11232  ℕ0cn0 11504  ℤcz 11589  Basecbs 16079   MndHom cmhm 17554  Grpcgrp 17643  invgcminusg 17644  .gcmg 17761   GrpHom cghm 17878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-seq 13016  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-minusg 17647  df-mulg 17762  df-ghm 17879 This theorem is referenced by:  ghmcyg  18517  mulgrhm2  20069  dchrabs  25205
 Copyright terms: Public domain W3C validator