![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmmhmb | Structured version Visualization version GIF version |
Description: Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
ghmmhmb | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmmhm 17871 | . . 3 ⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) → 𝑓 ∈ (𝑆 MndHom 𝑇)) | |
2 | eqid 2760 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | eqid 2760 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
4 | eqid 2760 | . . . . 5 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
5 | eqid 2760 | . . . . 5 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
6 | simpll 807 | . . . . 5 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑆 ∈ Grp) | |
7 | simplr 809 | . . . . 5 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑇 ∈ Grp) | |
8 | 2, 3 | mhmf 17541 | . . . . . 6 ⊢ (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇)) |
9 | 8 | adantl 473 | . . . . 5 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓:(Base‘𝑆)⟶(Base‘𝑇)) |
10 | 2, 4, 5 | mhmlin 17543 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
11 | 10 | 3expb 1114 | . . . . . 6 ⊢ ((𝑓 ∈ (𝑆 MndHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
12 | 11 | adantll 752 | . . . . 5 ⊢ ((((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
13 | 2, 3, 4, 5, 6, 7, 9, 12 | isghmd 17870 | . . . 4 ⊢ (((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ 𝑓 ∈ (𝑆 MndHom 𝑇)) → 𝑓 ∈ (𝑆 GrpHom 𝑇)) |
14 | 13 | ex 449 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 MndHom 𝑇) → 𝑓 ∈ (𝑆 GrpHom 𝑇))) |
15 | 1, 14 | impbid2 216 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑓 ∈ (𝑆 GrpHom 𝑇) ↔ 𝑓 ∈ (𝑆 MndHom 𝑇))) |
16 | 15 | eqrdv 2758 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 MndHom cmhm 17534 Grpcgrp 17623 GrpHom cghm 17858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-map 8025 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-mhm 17536 df-grp 17626 df-ghm 17859 |
This theorem is referenced by: 0ghm 17875 resghm2 17878 resghm2b 17879 ghmco 17881 pwsdiagghm 17889 ghmpropd 17899 pwsco1rhm 18940 pwsco2rhm 18941 dchrghm 25180 c0ghm 42421 c0snghm 42426 |
Copyright terms: Public domain | W3C validator |