MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmlin Structured version   Visualization version   GIF version

Theorem ghmlin 17712
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmlin.x 𝑋 = (Base‘𝑆)
ghmlin.a + = (+g𝑆)
ghmlin.b = (+g𝑇)
Assertion
Ref Expression
ghmlin ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))

Proof of Theorem ghmlin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmlin.x . . . . . 6 𝑋 = (Base‘𝑆)
2 eqid 2651 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
3 ghmlin.a . . . . . 6 + = (+g𝑆)
4 ghmlin.b . . . . . 6 = (+g𝑇)
51, 2, 3, 4isghm 17707 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))))
65simprbi 479 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶(Base‘𝑇) ∧ ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏))))
76simprd 478 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)))
8 oveq1 6697 . . . . . 6 (𝑎 = 𝑈 → (𝑎 + 𝑏) = (𝑈 + 𝑏))
98fveq2d 6233 . . . . 5 (𝑎 = 𝑈 → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑈 + 𝑏)))
10 fveq2 6229 . . . . . 6 (𝑎 = 𝑈 → (𝐹𝑎) = (𝐹𝑈))
1110oveq1d 6705 . . . . 5 (𝑎 = 𝑈 → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑏)))
129, 11eqeq12d 2666 . . . 4 (𝑎 = 𝑈 → ((𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏))))
13 oveq2 6698 . . . . . 6 (𝑏 = 𝑉 → (𝑈 + 𝑏) = (𝑈 + 𝑉))
1413fveq2d 6233 . . . . 5 (𝑏 = 𝑉 → (𝐹‘(𝑈 + 𝑏)) = (𝐹‘(𝑈 + 𝑉)))
15 fveq2 6229 . . . . . 6 (𝑏 = 𝑉 → (𝐹𝑏) = (𝐹𝑉))
1615oveq2d 6706 . . . . 5 (𝑏 = 𝑉 → ((𝐹𝑈) (𝐹𝑏)) = ((𝐹𝑈) (𝐹𝑉)))
1714, 16eqeq12d 2666 . . . 4 (𝑏 = 𝑉 → ((𝐹‘(𝑈 + 𝑏)) = ((𝐹𝑈) (𝐹𝑏)) ↔ (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
1812, 17rspc2v 3353 . . 3 ((𝑈𝑋𝑉𝑋) → (∀𝑎𝑋𝑏𝑋 (𝐹‘(𝑎 + 𝑏)) = ((𝐹𝑎) (𝐹𝑏)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉))))
197, 18mpan9 485 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈𝑋𝑉𝑋)) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
20193impb 1279 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝑋𝑉𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹𝑈) (𝐹𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wf 5922  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  Grpcgrp 17469   GrpHom cghm 17704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-ghm 17705
This theorem is referenced by:  ghmid  17713  ghminv  17714  ghmsub  17715  ghmmhm  17717  ghmrn  17720  resghm  17723  ghmpreima  17729  ghmnsgima  17731  ghmnsgpreima  17732  ghmf1o  17737  lactghmga  17870  invghm  18285  ghmplusg  18295  srngadd  18905  islmhm2  19086  evlslem1  19563  mpfind  19584  evl1addd  19753  cygznlem3  19966  psgnco  19977  evpmodpmf1o  19990  ipdir  20032  mdetralt  20462  cpmatacl  20569  mat2pmatghm  20583  ghmcnp  21965  ply1rem  23968  dchrptlem2  25035  abliso  29824  rhmopp  29947  qqhghm  30160  qqhrhm  30161  gicabl  37986
  Copyright terms: Public domain W3C validator