MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghminv Structured version   Visualization version   GIF version

Theorem ghminv 17875
Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghminv.b 𝐵 = (Base‘𝑆)
ghminv.y 𝑀 = (invg𝑆)
ghminv.z 𝑁 = (invg𝑇)
Assertion
Ref Expression
ghminv ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))

Proof of Theorem ghminv
StepHypRef Expression
1 ghmgrp1 17870 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 ghminv.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2771 . . . . . . 7 (+g𝑆) = (+g𝑆)
4 eqid 2771 . . . . . . 7 (0g𝑆) = (0g𝑆)
5 ghminv.y . . . . . . 7 𝑀 = (invg𝑆)
62, 3, 4, 5grprinv 17677 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
71, 6sylan 569 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
87fveq2d 6336 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = (𝐹‘(0g𝑆)))
92, 5grpinvcl 17675 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
101, 9sylan 569 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
11 eqid 2771 . . . . . 6 (+g𝑇) = (+g𝑇)
122, 3, 11ghmlin 17873 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
1310, 12mpd3an3 1573 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
14 eqid 2771 . . . . . 6 (0g𝑇) = (0g𝑇)
154, 14ghmid 17874 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
1615adantr 466 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(0g𝑆)) = (0g𝑇))
178, 13, 163eqtr3d 2813 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇))
18 ghmgrp2 17871 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
1918adantr 466 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝑇 ∈ Grp)
20 eqid 2771 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
212, 20ghmf 17872 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
2221ffvelrnda 6502 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ (Base‘𝑇))
2321adantr 466 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝐹:𝐵⟶(Base‘𝑇))
2423, 10ffvelrnd 6503 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇))
25 ghminv.z . . . . 5 𝑁 = (invg𝑇)
2620, 11, 14, 25grpinvid1 17678 . . . 4 ((𝑇 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝑇) ∧ (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇)) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2719, 22, 24, 26syl3anc 1476 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2817, 27mpbird 247 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)))
2928eqcomd 2777 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wf 6027  cfv 6031  (class class class)co 6793  Basecbs 16064  +gcplusg 16149  0gc0g 16308  Grpcgrp 17630  invgcminusg 17631   GrpHom cghm 17865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-minusg 17634  df-ghm 17866
This theorem is referenced by:  ghmsub  17876  ghmmulg  17880  ghmrn  17881  ghmpreima  17890  ghmeql  17891  frgpup3lem  18397  asclinvg  19556  mplind  19717  psgninv  20143  zrhpsgnodpm  20153  cpmatinvcl  20742  sum2dchr  25220
  Copyright terms: Public domain W3C validator