![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmid | Structured version Visualization version GIF version |
Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmid.y | ⊢ 𝑌 = (0g‘𝑆) |
ghmid.z | ⊢ 0 = (0g‘𝑇) |
Ref | Expression |
---|---|
ghmid | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmgrp1 17884 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | |
2 | eqid 2761 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | ghmid.y | . . . . . . 7 ⊢ 𝑌 = (0g‘𝑆) | |
4 | 2, 3 | grpidcl 17672 | . . . . . 6 ⊢ (𝑆 ∈ Grp → 𝑌 ∈ (Base‘𝑆)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑌 ∈ (Base‘𝑆)) |
6 | eqid 2761 | . . . . . 6 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
7 | eqid 2761 | . . . . . 6 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
8 | 2, 6, 7 | ghmlin 17887 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑌 ∈ (Base‘𝑆) ∧ 𝑌 ∈ (Base‘𝑆)) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
9 | 5, 5, 8 | mpd3an23 1575 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌))) |
10 | 2, 6, 3 | grplid 17674 | . . . . . 6 ⊢ ((𝑆 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑆)) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
11 | 1, 5, 10 | syl2anc 696 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑌(+g‘𝑆)𝑌) = 𝑌) |
12 | 11 | fveq2d 6358 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(𝑌(+g‘𝑆)𝑌)) = (𝐹‘𝑌)) |
13 | 9, 12 | eqtr3d 2797 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌)) |
14 | ghmgrp2 17885 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | |
15 | eqid 2761 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
16 | 2, 15 | ghmf 17886 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇)) |
17 | 16, 5 | ffvelrnd 6525 | . . . 4 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) ∈ (Base‘𝑇)) |
18 | ghmid.z | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
19 | 15, 7, 18 | grpid 17679 | . . . 4 ⊢ ((𝑇 ∈ Grp ∧ (𝐹‘𝑌) ∈ (Base‘𝑇)) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
20 | 14, 17, 19 | syl2anc 696 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (((𝐹‘𝑌)(+g‘𝑇)(𝐹‘𝑌)) = (𝐹‘𝑌) ↔ 0 = (𝐹‘𝑌))) |
21 | 13, 20 | mpbid 222 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 0 = (𝐹‘𝑌)) |
22 | 21 | eqcomd 2767 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2140 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 +gcplusg 16164 0gc0g 16323 Grpcgrp 17644 GrpHom cghm 17879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-0g 16325 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-grp 17647 df-ghm 17880 |
This theorem is referenced by: ghminv 17889 ghmmhm 17892 ghmpreima 17904 ghmf1 17911 lactghmga 18045 f1rhm0to0 18963 f1rhm0to0ALT 18964 kerf1hrm 18966 srng0 19083 islmhm2 19261 evlslem2 19735 evlslem6 19736 evlslem3 19737 zrh0 20085 chrrhm 20102 zndvds0 20122 ip0l 20204 0mat2pmat 20764 nmolb2d 22744 nmoi 22754 nmoix 22755 nmoleub 22757 nmoleub2lem2 23137 nmhmcn 23141 dchrptlem2 25211 psgnid 30178 nrhmzr 42402 zrinitorngc 42529 |
Copyright terms: Public domain | W3C validator |