MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmf1o Structured version   Visualization version   GIF version

Theorem ghmf1o 17912
Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
ghmf1o.x 𝑋 = (Base‘𝑆)
ghmf1o.y 𝑌 = (Base‘𝑇)
Assertion
Ref Expression
ghmf1o (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))

Proof of Theorem ghmf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp2 17885 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
2 ghmgrp1 17884 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
31, 2jca 555 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
43adantr 472 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝑇 ∈ Grp ∧ 𝑆 ∈ Grp))
5 f1ocnv 6312 . . . . . 6 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
65adantl 473 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌1-1-onto𝑋)
7 f1of 6300 . . . . 5 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
86, 7syl 17 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹:𝑌𝑋)
9 simpll 807 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
108adantr 472 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑌𝑋)
11 simprl 811 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑥𝑌)
1210, 11ffvelrnd 6525 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑥) ∈ 𝑋)
13 simprr 813 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑦𝑌)
1410, 13ffvelrnd 6525 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹𝑦) ∈ 𝑋)
15 ghmf1o.x . . . . . . . . 9 𝑋 = (Base‘𝑆)
16 eqid 2761 . . . . . . . . 9 (+g𝑆) = (+g𝑆)
17 eqid 2761 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
1815, 16, 17ghmlin 17887 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
199, 12, 14, 18syl3anc 1477 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))))
20 simplr 809 . . . . . . . . 9 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝐹:𝑋1-1-onto𝑌)
21 f1ocnvfv2 6698 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑥𝑌) → (𝐹‘(𝐹𝑥)) = 𝑥)
2220, 11, 21syl2anc 696 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑥)) = 𝑥)
23 f1ocnvfv2 6698 . . . . . . . . 9 ((𝐹:𝑋1-1-onto𝑌𝑦𝑌) → (𝐹‘(𝐹𝑦)) = 𝑦)
2420, 13, 23syl2anc 696 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2522, 24oveq12d 6833 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘(𝐹𝑥))(+g𝑇)(𝐹‘(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
2619, 25eqtrd 2795 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦))
279, 2syl 17 . . . . . . . 8 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → 𝑆 ∈ Grp)
2815, 16grpcl 17652 . . . . . . . 8 ((𝑆 ∈ Grp ∧ (𝐹𝑥) ∈ 𝑋 ∧ (𝐹𝑦) ∈ 𝑋) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
2927, 12, 14, 28syl3anc 1477 . . . . . . 7 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋)
30 f1ocnvfv 6699 . . . . . . 7 ((𝐹:𝑋1-1-onto𝑌 ∧ ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∈ 𝑋) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3120, 29, 30syl2anc 696 . . . . . 6 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → ((𝐹‘((𝐹𝑥)(+g𝑆)(𝐹𝑦))) = (𝑥(+g𝑇)𝑦) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
3226, 31mpd 15 . . . . 5 (((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) ∧ (𝑥𝑌𝑦𝑌)) → (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
3332ralrimivva 3110 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
348, 33jca 555 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
35 ghmf1o.y . . . 4 𝑌 = (Base‘𝑇)
3635, 15, 17, 16isghm 17882 . . 3 (𝐹 ∈ (𝑇 GrpHom 𝑆) ↔ ((𝑇 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝑌𝑋 ∧ ∀𝑥𝑌𝑦𝑌 (𝐹‘(𝑥(+g𝑇)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
374, 34, 36sylanbrc 701 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹:𝑋1-1-onto𝑌) → 𝐹 ∈ (𝑇 GrpHom 𝑆))
3815, 35ghmf 17886 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋𝑌)
3938adantr 472 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋𝑌)
40 ffn 6207 . . . 4 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
4139, 40syl 17 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑋)
4235, 15ghmf 17886 . . . . 5 (𝐹 ∈ (𝑇 GrpHom 𝑆) → 𝐹:𝑌𝑋)
4342adantl 473 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑌𝑋)
44 ffn 6207 . . . 4 (𝐹:𝑌𝑋𝐹 Fn 𝑌)
4543, 44syl 17 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹 Fn 𝑌)
46 dff1o4 6308 . . 3 (𝐹:𝑋1-1-onto𝑌 ↔ (𝐹 Fn 𝑋𝐹 Fn 𝑌))
4741, 45, 46sylanbrc 701 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐹 ∈ (𝑇 GrpHom 𝑆)) → 𝐹:𝑋1-1-onto𝑌)
4837, 47impbida 913 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑇 GrpHom 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wral 3051  ccnv 5266   Fn wfn 6045  wf 6046  1-1-ontowf1o 6049  cfv 6050  (class class class)co 6815  Basecbs 16080  +gcplusg 16164  Grpcgrp 17644   GrpHom cghm 17879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-grp 17647  df-ghm 17880
This theorem is referenced by:  isgim2  17929  rhmf1o  18955  lmhmf1o  19269  rnghmf1o  42432
  Copyright terms: Public domain W3C validator