![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ghmf | Structured version Visualization version GIF version |
Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
Ref | Expression |
---|---|
ghmf.x | ⊢ 𝑋 = (Base‘𝑆) |
ghmf.y | ⊢ 𝑌 = (Base‘𝑇) |
Ref | Expression |
---|---|
ghmf | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmf.x | . . . 4 ⊢ 𝑋 = (Base‘𝑆) | |
2 | ghmf.y | . . . 4 ⊢ 𝑌 = (Base‘𝑇) | |
3 | eqid 2770 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
4 | eqid 2770 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
5 | 1, 2, 3, 4 | isghm 17867 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
6 | 5 | simprbi 478 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥)))) |
7 | 6 | simpld 476 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 +gcplusg 16148 Grpcgrp 17629 GrpHom cghm 17864 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-ghm 17865 |
This theorem is referenced by: ghmid 17873 ghminv 17874 ghmsub 17875 ghmmhm 17877 ghmmulg 17879 ghmrn 17880 resghm 17883 ghmpreima 17889 ghmeql 17890 ghmnsgima 17891 ghmnsgpreima 17892 ghmeqker 17894 ghmf1 17896 ghmf1o 17897 gimcnv 17916 lactghmga 18030 frgpup3lem 18396 frgpup3 18397 ghmplusg 18455 rhmf 18935 isrhm2d 18937 lmhmf 19246 lmhmpropd 19285 evlslem2 19726 frgpcyg 20136 psgninv 20142 zrhpsgninv 20145 evpmss 20146 psgnevpmb 20147 psgnodpm 20148 zrhpsgnevpm 20151 zrhpsgnodpm 20152 nmoi 22751 nmoix 22752 nmoi2 22753 nmoleub 22754 nmoeq0 22759 nmoco 22760 nmotri 22762 nmods 22767 nghmcn 22768 isrnghmmul 42411 rnghmf 42417 |
Copyright terms: Public domain | W3C validator |