Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmco Structured version   Visualization version   GIF version

Theorem ghmco 17888
 Description: The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
ghmco ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))

Proof of Theorem ghmco
StepHypRef Expression
1 ghmmhm 17878 . . 3 (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝐹 ∈ (𝑇 MndHom 𝑈))
2 ghmmhm 17878 . . 3 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝐺 ∈ (𝑆 MndHom 𝑇))
3 mhmco 17570 . . 3 ((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))
41, 2, 3syl2an 583 . 2 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))
5 ghmgrp1 17870 . . 3 (𝐺 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
6 ghmgrp2 17871 . . 3 (𝐹 ∈ (𝑇 GrpHom 𝑈) → 𝑈 ∈ Grp)
7 ghmmhmb 17879 . . 3 ((𝑆 ∈ Grp ∧ 𝑈 ∈ Grp) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈))
85, 6, 7syl2anr 584 . 2 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝑆 GrpHom 𝑈) = (𝑆 MndHom 𝑈))
94, 8eleqtrrd 2853 1 ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 GrpHom 𝑈))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ∘ ccom 5253  (class class class)co 6793   MndHom cmhm 17541  Grpcgrp 17630   GrpHom cghm 17865 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-ghm 17866 This theorem is referenced by:  gimco  17918  rhmco  18947  lmhmco  19256  lmhmvsca  19258  frgpcyg  20137  nmoco  22761  nghmco  22762  rnghmco  42435
 Copyright terms: Public domain W3C validator