MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmcnp Structured version   Visualization version   GIF version

Theorem ghmcnp 21965
Description: A group homomorphism on topological groups is continuous everywhere if it is continuous at any point. (Contributed by Mario Carneiro, 21-Oct-2015.)
Hypotheses
Ref Expression
ghmcnp.x 𝑋 = (Base‘𝐺)
ghmcnp.j 𝐽 = (TopOpen‘𝐺)
ghmcnp.k 𝐾 = (TopOpen‘𝐻)
Assertion
Ref Expression
ghmcnp ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾))))

Proof of Theorem ghmcnp
Dummy variables 𝑣 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . . 6 𝐽 = 𝐽
21cnprcl 21097 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 𝐽)
32a1i 11 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐴 𝐽))
4 ghmcnp.j . . . . . . . . . 10 𝐽 = (TopOpen‘𝐺)
5 ghmcnp.x . . . . . . . . . 10 𝑋 = (Base‘𝐺)
64, 5tmdtopon 21932 . . . . . . . . 9 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝑋))
763ad2ant1 1102 . . . . . . . 8 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝐽 ∈ (TopOn‘𝑋))
87adantr 480 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘𝑋))
9 simpl2 1085 . . . . . . . 8 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐻 ∈ TopMnd)
10 ghmcnp.k . . . . . . . . 9 𝐾 = (TopOpen‘𝐻)
11 eqid 2651 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
1210, 11tmdtopon 21932 . . . . . . . 8 (𝐻 ∈ TopMnd → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
139, 12syl 17 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
14 simpr 476 . . . . . . 7 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
15 cnpf2 21102 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻))
168, 13, 14, 15syl3anc 1366 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹:𝑋⟶(Base‘𝐻))
1716adantr 480 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐹:𝑋⟶(Base‘𝐻))
1814adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
19 eqid 2651 . . . . . . . . . . . . . . 15 (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) = (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤))
2019mptpreima 5666 . . . . . . . . . . . . . 14 ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) = {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}
219adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐻 ∈ TopMnd)
2216adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻))
23 simpll3 1122 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
24 ghmgrp1 17709 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐺 ∈ Grp)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐺 ∈ Grp)
26 simprl 809 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝑥𝑋)
272adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 𝐽)
28 toponuni 20767 . . . . . . . . . . . . . . . . . . . . 21 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
298, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝑋 = 𝐽)
3027, 29eleqtrrd 2733 . . . . . . . . . . . . . . . . . . 19 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴𝑋)
3130adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐴𝑋)
32 eqid 2651 . . . . . . . . . . . . . . . . . . 19 (-g𝐺) = (-g𝐺)
335, 32grpsubcl 17542 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
3425, 26, 31, 33syl3anc 1366 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
3522, 34ffvelrnd 6400 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g𝐺)𝐴)) ∈ (Base‘𝐻))
36 eqid 2651 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
3719, 11, 36, 10tmdlactcn 21953 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ TopMnd ∧ (𝐹‘(𝑥(-g𝐺)𝐴)) ∈ (Base‘𝐻)) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾))
3821, 35, 37syl2anc 694 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾))
39 simprrl 821 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝑦𝐾)
40 cnima 21117 . . . . . . . . . . . . . . 15 (((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) ∈ (𝐾 Cn 𝐾) ∧ 𝑦𝐾) → ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) ∈ 𝐾)
4138, 39, 40syl2anc 694 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝑤 ∈ (Base‘𝐻) ↦ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤)) “ 𝑦) ∈ 𝐾)
4220, 41syl5eqelr 2735 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ∈ 𝐾)
4322, 31ffvelrnd 6400 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝐴) ∈ (Base‘𝐻))
44 eqid 2651 . . . . . . . . . . . . . . . . . . 19 (-g𝐻) = (-g𝐻)
455, 32, 44ghmsub 17715 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑥𝑋𝐴𝑋) → (𝐹‘(𝑥(-g𝐺)𝐴)) = ((𝐹𝑥)(-g𝐻)(𝐹𝐴)))
4623, 26, 31, 45syl3anc 1366 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹‘(𝑥(-g𝐺)𝐴)) = ((𝐹𝑥)(-g𝐻)(𝐹𝐴)))
4746oveq1d 6705 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) = (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)))
48 ghmgrp2 17710 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (𝐺 GrpHom 𝐻) → 𝐻 ∈ Grp)
4923, 48syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐻 ∈ Grp)
5022, 26ffvelrnd 6400 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝑥) ∈ (Base‘𝐻))
5111, 36, 44grpnpcan 17554 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐹𝑥) ∈ (Base‘𝐻) ∧ (𝐹𝐴) ∈ (Base‘𝐻)) → (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
5249, 50, 43, 51syl3anc 1366 . . . . . . . . . . . . . . . 16 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (((𝐹𝑥)(-g𝐻)(𝐹𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
5347, 52eqtrd 2685 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) = (𝐹𝑥))
54 simprrr 822 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝑥) ∈ 𝑦)
5553, 54eqeltrd 2730 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) ∈ 𝑦)
56 oveq2 6698 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐹𝐴) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)))
5756eleq1d 2715 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝐴) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) ∈ 𝑦))
5857elrab 3396 . . . . . . . . . . . . . 14 ((𝐹𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ↔ ((𝐹𝐴) ∈ (Base‘𝐻) ∧ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝐴)) ∈ 𝑦))
5943, 55, 58sylanbrc 699 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (𝐹𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦})
60 cnpimaex 21108 . . . . . . . . . . . . 13 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ∈ 𝐾 ∧ (𝐹𝐴) ∈ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}))
6118, 42, 59, 60syl3anc 1366 . . . . . . . . . . . 12 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}))
62 ssrab 3713 . . . . . . . . . . . . . . . 16 ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} ↔ ((𝐹𝑧) ⊆ (Base‘𝐻) ∧ ∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦))
6362simprbi 479 . . . . . . . . . . . . . . 15 ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} → ∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦)
6422adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝐹:𝑋⟶(Base‘𝐻))
65 ffn 6083 . . . . . . . . . . . . . . . . 17 (𝐹:𝑋⟶(Base‘𝐻) → 𝐹 Fn 𝑋)
6664, 65syl 17 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝐹 Fn 𝑋)
678adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → 𝐽 ∈ (TopOn‘𝑋))
68 toponss 20779 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝐽) → 𝑧𝑋)
6967, 68sylan 487 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → 𝑧𝑋)
70 oveq2 6698 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹𝑣) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)))
7170eleq1d 2715 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹𝑣) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7271ralima 6538 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝑋𝑧𝑋) → (∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7366, 69, 72syl2anc 694 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → (∀𝑤 ∈ (𝐹𝑧)((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦 ↔ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
7463, 73syl5ib 234 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦} → ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))
75 eqid 2651 . . . . . . . . . . . . . . . . . 18 (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) = (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))
7675mptpreima 5666 . . . . . . . . . . . . . . . . 17 ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}
77 simpl1 1084 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐺 ∈ TopMnd)
7877ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐺 ∈ TopMnd)
7925adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐺 ∈ Grp)
8031adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐴𝑋)
8126adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑥𝑋)
825, 32grpsubcl 17542 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
8379, 80, 81, 82syl3anc 1366 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
84 eqid 2651 . . . . . . . . . . . . . . . . . . . 20 (+g𝐺) = (+g𝐺)
8575, 5, 84, 4tmdlactcn 21953 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ TopMnd ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋) → (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽))
8678, 83, 85syl2anc 694 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽))
87 simprl 809 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑧𝐽)
88 cnima 21117 . . . . . . . . . . . . . . . . . 18 (((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) ∈ (𝐽 Cn 𝐽) ∧ 𝑧𝐽) → ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) ∈ 𝐽)
8986, 87, 88syl2anc 694 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝑤𝑋 ↦ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) “ 𝑧) ∈ 𝐽)
9076, 89syl5eqelr 2735 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∈ 𝐽)
915, 84, 32grpnpcan 17554 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝐴)
9279, 80, 81, 91syl3anc 1366 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) = 𝐴)
93 simprrl 821 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐴𝑧)
9492, 93eqeltrd 2730 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧)
95 oveq2 6698 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑥 → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥))
9695eleq1d 2715 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑥 → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 ↔ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧))
9796elrab 3396 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ↔ (𝑥𝑋 ∧ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑥) ∈ 𝑧))
9881, 94, 97sylanbrc 699 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧})
99 simprrr 822 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦)
100 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → (𝐹𝑣) = (𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
101100oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
102101eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦 ↔ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
103102rspccv 3337 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦 → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10499, 103syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
105104adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦))
10623adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
10734adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝑥(-g𝐺)𝐴) ∈ 𝑋)
108106, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐺 ∈ Grp)
10931adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝐴𝑋)
11026adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝑥𝑋)
111108, 109, 110, 82syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐴(-g𝐺)𝑥) ∈ 𝑋)
112 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → 𝑤𝑋)
1135, 84grpcl 17477 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ Grp ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋𝑤𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋)
114108, 111, 112, 113syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋)
1155, 84, 36ghmlin 17712 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑋 ∧ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
116106, 107, 114, 115syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))))
117 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (invg𝐺) = (invg𝐺)
1185, 32, 117grpinvsub 17544 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐴𝑋) → ((invg𝐺)‘(𝑥(-g𝐺)𝐴)) = (𝐴(-g𝐺)𝑥))
119108, 110, 109, 118syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((invg𝐺)‘(𝑥(-g𝐺)𝐴)) = (𝐴(-g𝐺)𝑥))
120119oveq2d 6706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = ((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥)))
121 eqid 2651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (0g𝐺) = (0g𝐺)
1225, 84, 121, 117grprinv 17516 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐺 ∈ Grp ∧ (𝑥(-g𝐺)𝐴) ∈ 𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = (0g𝐺))
123108, 107, 122syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((invg𝐺)‘(𝑥(-g𝐺)𝐴))) = (0g𝐺))
124120, 123eqtr3d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥)) = (0g𝐺))
125124oveq1d 6705 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((0g𝐺)(+g𝐺)𝑤))
1265, 84grpass 17478 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ Grp ∧ ((𝑥(-g𝐺)𝐴) ∈ 𝑋 ∧ (𝐴(-g𝐺)𝑥) ∈ 𝑋𝑤𝑋)) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
127108, 107, 111, 112, 126syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝑥(-g𝐺)𝐴)(+g𝐺)(𝐴(-g𝐺)𝑥))(+g𝐺)𝑤) = ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)))
1285, 84, 121grplid 17499 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐺 ∈ Grp ∧ 𝑤𝑋) → ((0g𝐺)(+g𝐺)𝑤) = 𝑤)
129108, 112, 128syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((0g𝐺)(+g𝐺)𝑤) = 𝑤)
130125, 127, 1293eqtr3d 2693 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤)) = 𝑤)
131130fveq2d 6233 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → (𝐹‘((𝑥(-g𝐺)𝐴)(+g𝐺)((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
132116, 131eqtr3d 2687 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
133132adantlr 751 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) = (𝐹𝑤))
134133eleq1d 2715 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹‘((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤))) ∈ 𝑦 ↔ (𝐹𝑤) ∈ 𝑦))
135105, 134sylibd 229 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) ∧ 𝑤𝑋) → (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
136135ralrimiva 2995 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑤𝑋 (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
137 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → (𝐹𝑣) = (𝐹𝑤))
138137eleq1d 2715 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤 → ((𝐹𝑣) ∈ 𝑦 ↔ (𝐹𝑤) ∈ 𝑦))
139138ralrab2 3405 . . . . . . . . . . . . . . . . . 18 (∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦 ↔ ∀𝑤𝑋 (((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧 → (𝐹𝑤) ∈ 𝑦))
140136, 139sylibr 224 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦)
14122adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → 𝐹:𝑋⟶(Base‘𝐻))
142 ffun 6086 . . . . . . . . . . . . . . . . . . 19 (𝐹:𝑋⟶(Base‘𝐻) → Fun 𝐹)
143141, 142syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → Fun 𝐹)
144 ssrab2 3720 . . . . . . . . . . . . . . . . . . 19 {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ 𝑋
145 fdm 6089 . . . . . . . . . . . . . . . . . . . 20 (𝐹:𝑋⟶(Base‘𝐻) → dom 𝐹 = 𝑋)
146141, 145syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → dom 𝐹 = 𝑋)
147144, 146syl5sseqr 3687 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹)
148 funimass4 6286 . . . . . . . . . . . . . . . . . 18 ((Fun 𝐹 ∧ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ⊆ dom 𝐹) → ((𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦))
149143, 147, 148syl2anc 694 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ((𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦 ↔ ∀𝑣 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} (𝐹𝑣) ∈ 𝑦))
150140, 149mpbird 247 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)
151 eleq2 2719 . . . . . . . . . . . . . . . . . 18 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → (𝑥𝑢𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}))
152 imaeq2 5497 . . . . . . . . . . . . . . . . . . 19 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → (𝐹𝑢) = (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}))
153152sseq1d 3665 . . . . . . . . . . . . . . . . . 18 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → ((𝐹𝑢) ⊆ 𝑦 ↔ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦))
154151, 153anbi12d 747 . . . . . . . . . . . . . . . . 17 (𝑢 = {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} → ((𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦) ↔ (𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)))
155154rspcev 3340 . . . . . . . . . . . . . . . 16 (({𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∈ 𝐽 ∧ (𝑥 ∈ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧} ∧ (𝐹 “ {𝑤𝑋 ∣ ((𝐴(-g𝐺)𝑥)(+g𝐺)𝑤) ∈ 𝑧}) ⊆ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
15690, 98, 150, 155syl12anc 1364 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ (𝑧𝐽 ∧ (𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
157156expr 642 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐴𝑧 ∧ ∀𝑣𝑧 ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)(𝐹𝑣)) ∈ 𝑦) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
15874, 157sylan2d 498 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) ∧ 𝑧𝐽) → ((𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
159158rexlimdva 3060 . . . . . . . . . . . 12 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → (∃𝑧𝐽 (𝐴𝑧 ∧ (𝐹𝑧) ⊆ {𝑤 ∈ (Base‘𝐻) ∣ ((𝐹‘(𝑥(-g𝐺)𝐴))(+g𝐻)𝑤) ∈ 𝑦}) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
16061, 159mpd 15 . . . . . . . . . . 11 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝑋 ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦))) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
161160anassrs 681 . . . . . . . . . 10 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) ∧ (𝑦𝐾 ∧ (𝐹𝑥) ∈ 𝑦)) → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦))
162161expr 642 . . . . . . . . 9 (((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) ∧ 𝑦𝐾) → ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
163162ralrimiva 2995 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))
1648adantr 480 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐽 ∈ (TopOn‘𝑋))
16513adantr 480 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐾 ∈ (TopOn‘(Base‘𝐻)))
166 simpr 476 . . . . . . . . 9 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝑥𝑋)
167 iscnp 21089 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))))
168164, 165, 166, 167syl3anc 1366 . . . . . . . 8 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑦𝐾 ((𝐹𝑥) ∈ 𝑦 → ∃𝑢𝐽 (𝑥𝑢 ∧ (𝐹𝑢) ⊆ 𝑦)))))
16917, 163, 168mpbir2and 977 . . . . . . 7 ((((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
170169ralrimiva 2995 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))
171 cncnp 21132 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘(Base‘𝐻))) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
1728, 13, 171syl2anc 694 . . . . . 6 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶(Base‘𝐻) ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
17316, 170, 172mpbir2and 977 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹 ∈ (𝐽 Cn 𝐾))
174173ex 449 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹 ∈ (𝐽 Cn 𝐾)))
1753, 174jcad 554 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
1761cncnpi 21130 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 𝐽) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
177176ancoms 468 . . 3 ((𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
178175, 177impbid1 215 . 2 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
1797, 28syl 17 . . . 4 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → 𝑋 = 𝐽)
180179eleq2d 2716 . . 3 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐴𝑋𝐴 𝐽))
181180anbi1d 741 . 2 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → ((𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾)) ↔ (𝐴 𝐽𝐹 ∈ (𝐽 Cn 𝐾))))
182178, 181bitr4d 271 1 ((𝐺 ∈ TopMnd ∧ 𝐻 ∈ TopMnd ∧ 𝐹 ∈ (𝐺 GrpHom 𝐻)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝐴𝑋𝐹 ∈ (𝐽 Cn 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  wss 3607   cuni 4468  cmpt 4762  ccnv 5142  dom cdm 5143  cima 5146  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  TopOpenctopn 16129  0gc0g 16147  Grpcgrp 17469  invgcminusg 17470  -gcsg 17471   GrpHom cghm 17704  TopOnctopon 20763   Cn ccn 21076   CnP ccnp 21077  TopMndctmd 21921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-map 7901  df-0g 16149  df-topgen 16151  df-plusf 17288  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-ghm 17705  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cn 21079  df-cnp 21080  df-tx 21413  df-tmd 21923
This theorem is referenced by:  qqhcn  30163
  Copyright terms: Public domain W3C validator