![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexlem1 | Structured version Visualization version GIF version |
Description: The group element order is either zero or a nonzero multiplier that annihilates the element. (Contributed by Mario Carneiro, 23-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
gexval.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexval.2 | ⊢ · = (.g‘𝐺) |
gexval.3 | ⊢ 0 = (0g‘𝐺) |
gexval.4 | ⊢ 𝐸 = (gEx‘𝐺) |
gexval.i | ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } |
Ref | Expression |
---|---|
gexlem1 | ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexval.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | gexval.2 | . . 3 ⊢ · = (.g‘𝐺) | |
3 | gexval.3 | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | gexval.4 | . . 3 ⊢ 𝐸 = (gEx‘𝐺) | |
5 | gexval.i | . . 3 ⊢ 𝐼 = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } | |
6 | 1, 2, 3, 4, 5 | gexval 18199 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < ))) |
7 | eqeq2 2781 | . . . 4 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = 0 ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
8 | 7 | imbi1d 330 | . . 3 ⊢ (0 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)))) |
9 | eqeq2 2781 | . . . 4 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → (𝐸 = inf(𝐼, ℝ, < ) ↔ 𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )))) | |
10 | 9 | imbi1d 330 | . . 3 ⊢ (inf(𝐼, ℝ, < ) = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) ↔ (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)))) |
11 | orc 847 | . . . . 5 ⊢ ((𝐸 = 0 ∧ 𝐼 = ∅) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) | |
12 | 11 | expcom 398 | . . . 4 ⊢ (𝐼 = ∅ → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
13 | 12 | adantl 467 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝐼 = ∅) → (𝐸 = 0 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
14 | ssrab2 3834 | . . . . . . 7 ⊢ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ | |
15 | nnuz 11924 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
16 | 15 | eqcomi 2779 | . . . . . . 7 ⊢ (ℤ≥‘1) = ℕ |
17 | 14, 5, 16 | 3sstr4i 3791 | . . . . . 6 ⊢ 𝐼 ⊆ (ℤ≥‘1) |
18 | df-ne 2943 | . . . . . . . 8 ⊢ (𝐼 ≠ ∅ ↔ ¬ 𝐼 = ∅) | |
19 | 18 | biimpri 218 | . . . . . . 7 ⊢ (¬ 𝐼 = ∅ → 𝐼 ≠ ∅) |
20 | 19 | adantl 467 | . . . . . 6 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → 𝐼 ≠ ∅) |
21 | infssuzcl 11974 | . . . . . 6 ⊢ ((𝐼 ⊆ (ℤ≥‘1) ∧ 𝐼 ≠ ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) | |
22 | 17, 20, 21 | sylancr 567 | . . . . 5 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → inf(𝐼, ℝ, < ) ∈ 𝐼) |
23 | eleq1a 2844 | . . . . 5 ⊢ (inf(𝐼, ℝ, < ) ∈ 𝐼 → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸 ∈ 𝐼)) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → 𝐸 ∈ 𝐼)) |
25 | olc 848 | . . . 4 ⊢ (𝐸 ∈ 𝐼 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) | |
26 | 24, 25 | syl6 35 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ¬ 𝐼 = ∅) → (𝐸 = inf(𝐼, ℝ, < ) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
27 | 8, 10, 13, 26 | ifbothda 4260 | . 2 ⊢ (𝐺 ∈ 𝑉 → (𝐸 = if(𝐼 = ∅, 0, inf(𝐼, ℝ, < )) → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼))) |
28 | 6, 27 | mpd 15 | 1 ⊢ (𝐺 ∈ 𝑉 → ((𝐸 = 0 ∧ 𝐼 = ∅) ∨ 𝐸 ∈ 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∨ wo 826 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 {crab 3064 ⊆ wss 3721 ∅c0 4061 ifcif 4223 ‘cfv 6031 (class class class)co 6792 infcinf 8502 ℝcr 10136 0cc0 10137 1c1 10138 < clt 10275 ℕcn 11221 ℤ≥cuz 11887 Basecbs 16063 0gc0g 16307 .gcmg 17747 gExcgex 18151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-gex 18155 |
This theorem is referenced by: gexcl 18201 gexid 18202 gexdvds 18205 |
Copyright terms: Public domain | W3C validator |