Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexid Structured version   Visualization version   GIF version

Theorem gexid 18203
 Description: Any element to the power of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexid (𝐴𝑋 → (𝐸 · 𝐴) = 0 )

Proof of Theorem gexid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6803 . . . 4 (𝐸 = 0 → (𝐸 · 𝐴) = (0 · 𝐴))
2 gexcl.1 . . . . 5 𝑋 = (Base‘𝐺)
3 gexid.4 . . . . 5 0 = (0g𝐺)
4 gexid.3 . . . . 5 · = (.g𝐺)
52, 3, 4mulg0 17754 . . . 4 (𝐴𝑋 → (0 · 𝐴) = 0 )
61, 5sylan9eqr 2827 . . 3 ((𝐴𝑋𝐸 = 0) → (𝐸 · 𝐴) = 0 )
76adantrr 696 . 2 ((𝐴𝑋 ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸 · 𝐴) = 0 )
8 oveq1 6803 . . . . . . 7 (𝑦 = 𝐸 → (𝑦 · 𝑥) = (𝐸 · 𝑥))
98eqeq1d 2773 . . . . . 6 (𝑦 = 𝐸 → ((𝑦 · 𝑥) = 0 ↔ (𝐸 · 𝑥) = 0 ))
109ralbidv 3135 . . . . 5 (𝑦 = 𝐸 → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ))
1110elrab 3515 . . . 4 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝐸 ∈ ℕ ∧ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ))
1211simprbi 484 . . 3 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → ∀𝑥𝑋 (𝐸 · 𝑥) = 0 )
13 oveq2 6804 . . . . 5 (𝑥 = 𝐴 → (𝐸 · 𝑥) = (𝐸 · 𝐴))
1413eqeq1d 2773 . . . 4 (𝑥 = 𝐴 → ((𝐸 · 𝑥) = 0 ↔ (𝐸 · 𝐴) = 0 ))
1514rspcva 3458 . . 3 ((𝐴𝑋 ∧ ∀𝑥𝑋 (𝐸 · 𝑥) = 0 ) → (𝐸 · 𝐴) = 0 )
1612, 15sylan2 580 . 2 ((𝐴𝑋𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (𝐸 · 𝐴) = 0 )
17 elfvex 6364 . . . 4 (𝐴 ∈ (Base‘𝐺) → 𝐺 ∈ V)
1817, 2eleq2s 2868 . . 3 (𝐴𝑋𝐺 ∈ V)
19 gexcl.2 . . . 4 𝐸 = (gEx‘𝐺)
20 eqid 2771 . . . 4 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
212, 4, 3, 19, 20gexlem1 18201 . . 3 (𝐺 ∈ V → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
2218, 21syl 17 . 2 (𝐴𝑋 → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
237, 16, 22mpjaodan 943 1 (𝐴𝑋 → (𝐸 · 𝐴) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∨ wo 836   = wceq 1631   ∈ wcel 2145  ∀wral 3061  {crab 3065  Vcvv 3351  ∅c0 4063  ‘cfv 6030  (class class class)co 6796  0cc0 10142  ℕcn 11226  Basecbs 16064  0gc0g 16308  .gcmg 17748  gExcgex 18152 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-seq 13009  df-mulg 17749  df-gex 18156 This theorem is referenced by:  gexdvdsi  18205  gexod  18208  gex1  18213  pgpfac1lem3a  18683
 Copyright terms: Public domain W3C validator