![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexdvds3 | Structured version Visualization version GIF version |
Description: The exponent of a finite group divides the order (cardinality) of the group. Corollary of Lagrange's theorem for the order of a subgroup. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl2.2 | ⊢ 𝐸 = (gEx‘𝐺) |
Ref | Expression |
---|---|
gexdvds3 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∥ (♯‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexcl2.1 | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
2 | eqid 2771 | . . . . 5 ⊢ (od‘𝐺) = (od‘𝐺) | |
3 | 1, 2 | oddvds2 18190 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
4 | 3 | 3expa 1111 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
5 | 4 | ralrimiva 3115 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ∀𝑥 ∈ 𝑋 ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
6 | hashcl 13349 | . . . . 5 ⊢ (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ0) | |
7 | 6 | adantl 467 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (♯‘𝑋) ∈ ℕ0) |
8 | 7 | nn0zd 11682 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (♯‘𝑋) ∈ ℤ) |
9 | gexcl2.2 | . . . 4 ⊢ 𝐸 = (gEx‘𝐺) | |
10 | 1, 9, 2 | gexdvds2 18207 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (♯‘𝑋) ∈ ℤ) → (𝐸 ∥ (♯‘𝑋) ↔ ∀𝑥 ∈ 𝑋 ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋))) |
11 | 8, 10 | syldan 579 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝐸 ∥ (♯‘𝑋) ↔ ∀𝑥 ∈ 𝑋 ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋))) |
12 | 5, 11 | mpbird 247 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∥ (♯‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 class class class wbr 4786 ‘cfv 6031 Fincfn 8109 ℕ0cn0 11494 ℤcz 11579 ♯chash 13321 ∥ cdvds 15189 Basecbs 16064 Grpcgrp 17630 odcod 18151 gExcgex 18152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-disj 4755 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-omul 7718 df-er 7896 df-ec 7898 df-qs 7902 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-acn 8968 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-dvds 15190 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-sbg 17635 df-mulg 17749 df-subg 17799 df-eqg 17801 df-od 18155 df-gex 18156 |
This theorem is referenced by: cyggex2 18505 pgpfac1lem3a 18683 |
Copyright terms: Public domain | W3C validator |