MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvds Structured version   Visualization version   GIF version

Theorem gexdvds 18045
Description: The only 𝑁 that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvds ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑋   𝑥, 0   𝑥, ·

Proof of Theorem gexdvds
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 gexcl.2 . . . . . 6 𝐸 = (gEx‘𝐺)
3 gexid.3 . . . . . 6 · = (.g𝐺)
4 gexid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4gexdvdsi 18044 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸𝑁) → (𝑁 · 𝑥) = 0 )
653expia 1286 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝐸𝑁 → (𝑁 · 𝑥) = 0 ))
76ralrimdva 2998 . . 3 (𝐺 ∈ Grp → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
87adantr 480 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
9 noel 3952 . . . . . . 7 ¬ (abs‘𝑁) ∈ ∅
10 oveq1 6697 . . . . . . . . . . . 12 (𝑦 = (abs‘𝑁) → (𝑦 · 𝑥) = ((abs‘𝑁) · 𝑥))
1110eqeq1d 2653 . . . . . . . . . . 11 (𝑦 = (abs‘𝑁) → ((𝑦 · 𝑥) = 0 ↔ ((abs‘𝑁) · 𝑥) = 0 ))
1211ralbidv 3015 . . . . . . . . . 10 (𝑦 = (abs‘𝑁) → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
1312elrab 3396 . . . . . . . . 9 ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
14 simprr 811 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)
1514eleq2d 2716 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (abs‘𝑁) ∈ ∅))
1613, 15syl5rbbr 275 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ∅ ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 )))
1716rbaibd 969 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ((abs‘𝑁) ∈ ∅ ↔ (abs‘𝑁) ∈ ℕ))
189, 17mtbii 315 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ¬ (abs‘𝑁) ∈ ℕ)
1918ex 449 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → ¬ (abs‘𝑁) ∈ ℕ))
20 nn0abscl 14096 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
2120ad2antlr 763 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (abs‘𝑁) ∈ ℕ0)
22 elnn0 11332 . . . . . . 7 ((abs‘𝑁) ∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2321, 22sylib 208 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2423ord 391 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (¬ (abs‘𝑁) ∈ ℕ → (abs‘𝑁) = 0))
2519, 24syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → (abs‘𝑁) = 0))
26 simpr 476 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (abs‘𝑁) = 𝑁)
2726oveq1d 6705 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑁) · 𝑥) = (𝑁 · 𝑥))
2827eqeq1d 2653 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
29 oveq1 6697 . . . . . . . . 9 ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝑥) = (-𝑁 · 𝑥))
3029eqeq1d 2653 . . . . . . . 8 ((abs‘𝑁) = -𝑁 → (((abs‘𝑁) · 𝑥) = 0 ↔ (-𝑁 · 𝑥) = 0 ))
31 eqid 2651 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
321, 3, 31mulgneg 17607 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
33323expa 1284 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
344, 31grpinvid 17523 . . . . . . . . . . . 12 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
3534ad2antrr 762 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
3635eqcomd 2657 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0 = ((invg𝐺)‘ 0 ))
3733, 36eqeq12d 2666 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ ((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 )))
38 simpll 805 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
391, 3mulgcl 17606 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
40393expa 1284 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
411, 4grpidcl 17497 . . . . . . . . . . 11 (𝐺 ∈ Grp → 0𝑋)
4241ad2antrr 762 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0𝑋)
431, 31, 38, 40, 42grpinv11 17531 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 ) ↔ (𝑁 · 𝑥) = 0 ))
4437, 43bitrd 268 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
4530, 44sylan9bbr 737 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = -𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
46 zre 11419 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746ad2antlr 763 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝑁 ∈ ℝ)
4847absord 14198 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
4928, 45, 48mpjaodan 844 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
5049ralbidva 3014 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
5150adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
52 0dvds 15049 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
5352ad2antlr 763 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (0 ∥ 𝑁𝑁 = 0))
54 simprl 809 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝐸 = 0)
5554breq1d 4695 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸𝑁 ↔ 0 ∥ 𝑁))
56 zcn 11420 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5756ad2antlr 763 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝑁 ∈ ℂ)
5857abs00ad 14074 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
5953, 55, 583bitr4rd 301 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝐸𝑁))
6025, 51, 593imtr3d 282 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
61 elrabi 3391 . . . 4 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝐸 ∈ ℕ)
6246adantl 481 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
63 nnrp 11880 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ+)
64 modval 12710 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6562, 63, 64syl2an 493 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6665adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6766oveq1d 6705 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥))
68 simplll 813 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐺 ∈ Grp)
69 simpllr 815 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑁 ∈ ℤ)
70 nnz 11437 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℤ)
7170ad2antlr 763 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∈ ℤ)
72 rerpdivcl 11899 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 / 𝐸) ∈ ℝ)
7362, 63, 72syl2an 493 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 / 𝐸) ∈ ℝ)
7473flcld 12639 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7574adantr 480 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7671, 75zmulcld 11526 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ)
77 simprl 809 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑥𝑋)
78 eqid 2651 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
791, 3, 78mulgsubdir 17629 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ ∧ 𝑥𝑋)) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
8068, 69, 76, 77, 79syl13anc 1368 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
81 simprr 811 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 · 𝑥) = 0 )
82 dvdsmul1 15050 . . . . . . . . . . . . 13 ((𝐸 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐸)) ∈ ℤ) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
8371, 75, 82syl2anc 694 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
841, 2, 3, 4gexdvdsi 18044 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8568, 77, 83, 84syl3anc 1366 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8681, 85oveq12d 6708 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = ( 0 (-g𝐺) 0 ))
87 simpll 805 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp)
8841ad2antrr 762 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 0𝑋)
891, 4, 78grpsubid 17546 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 0𝑋) → ( 0 (-g𝐺) 0 ) = 0 )
9087, 88, 89syl2anc 694 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ( 0 (-g𝐺) 0 ) = 0 )
9190adantr 480 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ( 0 (-g𝐺) 0 ) = 0 )
9286, 91eqtrd 2685 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = 0 )
9367, 80, 923eqtrd 2689 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = 0 )
9493expr 642 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → ((𝑁 · 𝑥) = 0 → ((𝑁 mod 𝐸) · 𝑥) = 0 ))
9594ralimdva 2991 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ))
96 modlt 12719 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) < 𝐸)
9762, 63, 96syl2an 493 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) < 𝐸)
98 zmodcl 12730 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
9998adantll 750 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
10099nn0red 11390 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℝ)
101 nnre 11065 . . . . . . . . . 10 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ)
102101adantl 481 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℝ)
103100, 102ltnled 10222 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) < 𝐸 ↔ ¬ 𝐸 ≤ (𝑁 mod 𝐸)))
10497, 103mpbid 222 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ¬ 𝐸 ≤ (𝑁 mod 𝐸))
1051, 2, 3, 4gexlem2 18043 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ∈ (1...(𝑁 mod 𝐸)))
106 elfzle2 12383 . . . . . . . . . . . . 13 (𝐸 ∈ (1...(𝑁 mod 𝐸)) → 𝐸 ≤ (𝑁 mod 𝐸))
107105, 106syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ≤ (𝑁 mod 𝐸))
1081073expia 1286 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0𝐸 ≤ (𝑁 mod 𝐸)))
109108impancom 455 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → ((𝑁 mod 𝐸) ∈ ℕ → 𝐸 ≤ (𝑁 mod 𝐸)))
110109con3d 148 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ))
111110ex 449 . . . . . . . 8 (𝐺 ∈ Grp → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
112111ad2antrr 762 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
113104, 112mpid 44 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → ¬ (𝑁 mod 𝐸) ∈ ℕ))
114 elnn0 11332 . . . . . . . 8 ((𝑁 mod 𝐸) ∈ ℕ0 ↔ ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
11599, 114sylib 208 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
116115ord 391 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (¬ (𝑁 mod 𝐸) ∈ ℕ → (𝑁 mod 𝐸) = 0))
11795, 113, 1163syld 60 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → (𝑁 mod 𝐸) = 0))
118 simpr 476 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℕ)
119 simplr 807 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝑁 ∈ ℤ)
120 dvdsval3 15031 . . . . . 6 ((𝐸 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
121118, 119, 120syl2anc 694 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
122117, 121sylibrd 249 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
12361, 122sylan2 490 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
124 eqid 2651 . . . . 5 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
1251, 3, 4, 2, 124gexlem1 18040 . . . 4 (𝐺 ∈ Grp → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
126125adantr 480 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
12760, 123, 126mpjaodan 844 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
1288, 127impbid 202 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  {crab 2945  c0 3948   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  +crp 11870  ...cfz 12364  cfl 12631   mod cmo 12708  abscabs 14018  cdvds 15027  Basecbs 15904  0gc0g 16147  Grpcgrp 17469  invgcminusg 17470  -gcsg 17471  .gcmg 17587  gExcgex 17991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-gex 17995
This theorem is referenced by:  gexdvds2  18046
  Copyright terms: Public domain W3C validator