MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexdvds Structured version   Visualization version   GIF version

Theorem gexdvds 18226
Description: The only 𝑁 that annihilate all the elements of the group are the multiples of the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexdvds ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑋   𝑥, 0   𝑥, ·

Proof of Theorem gexdvds
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gexcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 gexcl.2 . . . . . 6 𝐸 = (gEx‘𝐺)
3 gexid.3 . . . . . 6 · = (.g𝐺)
4 gexid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4gexdvdsi 18225 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸𝑁) → (𝑁 · 𝑥) = 0 )
653expia 1141 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝐸𝑁 → (𝑁 · 𝑥) = 0 ))
76ralrimdva 3121 . . 3 (𝐺 ∈ Grp → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
87adantr 467 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 → ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
9 noel 4077 . . . . . . 7 ¬ (abs‘𝑁) ∈ ∅
10 oveq1 6819 . . . . . . . . . . . 12 (𝑦 = (abs‘𝑁) → (𝑦 · 𝑥) = ((abs‘𝑁) · 𝑥))
1110eqeq1d 2776 . . . . . . . . . . 11 (𝑦 = (abs‘𝑁) → ((𝑦 · 𝑥) = 0 ↔ ((abs‘𝑁) · 𝑥) = 0 ))
1211ralbidv 3138 . . . . . . . . . 10 (𝑦 = (abs‘𝑁) → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
1312elrab 3521 . . . . . . . . 9 ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ))
14 simprr 778 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)
1514eleq2d 2839 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (abs‘𝑁) ∈ ∅))
1613, 15syl5rbbr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ∅ ↔ ((abs‘𝑁) ∈ ℕ ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 )))
1716rbaibd 531 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ((abs‘𝑁) ∈ ∅ ↔ (abs‘𝑁) ∈ ℕ))
189, 17mtbii 316 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) ∧ ∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ) → ¬ (abs‘𝑁) ∈ ℕ)
1918ex 398 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → ¬ (abs‘𝑁) ∈ ℕ))
20 nn0abscl 14282 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
2120ad2antlr 707 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (abs‘𝑁) ∈ ℕ0)
22 elnn0 11518 . . . . . . 7 ((abs‘𝑁) ∈ ℕ0 ↔ ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2321, 22sylib 209 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) ∈ ℕ ∨ (abs‘𝑁) = 0))
2423ord 880 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (¬ (abs‘𝑁) ∈ ℕ → (abs‘𝑁) = 0))
2519, 24syld 47 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 → (abs‘𝑁) = 0))
26 simpr 472 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (abs‘𝑁) = 𝑁)
2726oveq1d 6827 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → ((abs‘𝑁) · 𝑥) = (𝑁 · 𝑥))
2827eqeq1d 2776 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = 𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
29 oveq1 6819 . . . . . . . . 9 ((abs‘𝑁) = -𝑁 → ((abs‘𝑁) · 𝑥) = (-𝑁 · 𝑥))
3029eqeq1d 2776 . . . . . . . 8 ((abs‘𝑁) = -𝑁 → (((abs‘𝑁) · 𝑥) = 0 ↔ (-𝑁 · 𝑥) = 0 ))
31 eqid 2774 . . . . . . . . . . . 12 (invg𝐺) = (invg𝐺)
321, 3, 31mulgneg 17788 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
33323expa 1138 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (-𝑁 · 𝑥) = ((invg𝐺)‘(𝑁 · 𝑥)))
344, 31grpinvid 17704 . . . . . . . . . . . 12 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
3534ad2antrr 706 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((invg𝐺)‘ 0 ) = 0 )
3635eqcomd 2780 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0 = ((invg𝐺)‘ 0 ))
3733, 36eqeq12d 2789 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ ((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 )))
38 simpll 772 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
391, 3mulgcl 17787 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
40393expa 1138 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (𝑁 · 𝑥) ∈ 𝑋)
411, 4grpidcl 17678 . . . . . . . . . . 11 (𝐺 ∈ Grp → 0𝑋)
4241ad2antrr 706 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 0𝑋)
431, 31, 38, 40, 42grpinv11 17712 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((invg𝐺)‘(𝑁 · 𝑥)) = ((invg𝐺)‘ 0 ) ↔ (𝑁 · 𝑥) = 0 ))
4437, 43bitrd 269 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((-𝑁 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
4530, 44sylan9bbr 501 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) ∧ (abs‘𝑁) = -𝑁) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
46 zre 11605 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4746ad2antlr 707 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → 𝑁 ∈ ℝ)
4847absord 14384 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → ((abs‘𝑁) = 𝑁 ∨ (abs‘𝑁) = -𝑁))
4928, 45, 48mpjaodan 970 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝑥𝑋) → (((abs‘𝑁) · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
5049ralbidva 3137 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
5150adantr 467 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 ((abs‘𝑁) · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
52 0dvds 15233 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
5352ad2antlr 707 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (0 ∥ 𝑁𝑁 = 0))
54 simprl 776 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝐸 = 0)
5554breq1d 4807 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (𝐸𝑁 ↔ 0 ∥ 𝑁))
56 zcn 11606 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
5756ad2antlr 707 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → 𝑁 ∈ ℂ)
5857abs00ad 14260 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝑁 = 0))
5953, 55, 583bitr4rd 302 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → ((abs‘𝑁) = 0 ↔ 𝐸𝑁))
6025, 51, 593imtr3d 283 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ (𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅)) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
61 elrabi 3516 . . . 4 (𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝐸 ∈ ℕ)
6246adantl 468 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
63 nnrp 12062 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ+)
64 modval 12900 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6562, 63, 64syl2an 584 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6665adantr 467 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 mod 𝐸) = (𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))))
6766oveq1d 6827 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥))
68 simplll 780 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐺 ∈ Grp)
69 simpllr 782 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑁 ∈ ℤ)
70 nnz 11623 . . . . . . . . . . . 12 (𝐸 ∈ ℕ → 𝐸 ∈ ℤ)
7170ad2antlr 707 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∈ ℤ)
72 rerpdivcl 12081 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 / 𝐸) ∈ ℝ)
7362, 63, 72syl2an 584 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 / 𝐸) ∈ ℝ)
7473flcld 12829 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7574adantr 467 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (⌊‘(𝑁 / 𝐸)) ∈ ℤ)
7671, 75zmulcld 11712 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ)
77 simprl 776 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝑥𝑋)
78 eqid 2774 . . . . . . . . . . 11 (-g𝐺) = (-g𝐺)
791, 3, 78mulgsubdir 17810 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ (𝐸 · (⌊‘(𝑁 / 𝐸))) ∈ ℤ ∧ 𝑥𝑋)) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
8068, 69, 76, 77, 79syl13anc 1481 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 − (𝐸 · (⌊‘(𝑁 / 𝐸)))) · 𝑥) = ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)))
81 simprr 778 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → (𝑁 · 𝑥) = 0 )
82 dvdsmul1 15234 . . . . . . . . . . . . 13 ((𝐸 ∈ ℤ ∧ (⌊‘(𝑁 / 𝐸)) ∈ ℤ) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
8371, 75, 82syl2anc 574 . . . . . . . . . . . 12 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → 𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸))))
841, 2, 3, 4gexdvdsi 18225 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ (𝐸 · (⌊‘(𝑁 / 𝐸)))) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8568, 77, 83, 84syl3anc 1480 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥) = 0 )
8681, 85oveq12d 6830 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = ( 0 (-g𝐺) 0 ))
87 simpll 772 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐺 ∈ Grp)
8841ad2antrr 706 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 0𝑋)
891, 4, 78grpsubid 17727 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 0𝑋) → ( 0 (-g𝐺) 0 ) = 0 )
9087, 88, 89syl2anc 574 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ( 0 (-g𝐺) 0 ) = 0 )
9190adantr 467 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ( 0 (-g𝐺) 0 ) = 0 )
9286, 91eqtrd 2808 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 · 𝑥)(-g𝐺)((𝐸 · (⌊‘(𝑁 / 𝐸))) · 𝑥)) = 0 )
9367, 80, 923eqtrd 2812 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ (𝑥𝑋 ∧ (𝑁 · 𝑥) = 0 )) → ((𝑁 mod 𝐸) · 𝑥) = 0 )
9493expr 445 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) ∧ 𝑥𝑋) → ((𝑁 · 𝑥) = 0 → ((𝑁 mod 𝐸) · 𝑥) = 0 ))
9594ralimdva 3114 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ))
96 modlt 12909 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝐸 ∈ ℝ+) → (𝑁 mod 𝐸) < 𝐸)
9762, 63, 96syl2an 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) < 𝐸)
98 zmodcl 12920 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
9998adantll 694 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℕ0)
10099nn0red 11576 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝑁 mod 𝐸) ∈ ℝ)
101 nnre 11250 . . . . . . . . . 10 (𝐸 ∈ ℕ → 𝐸 ∈ ℝ)
102101adantl 468 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℝ)
103100, 102ltnled 10407 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) < 𝐸 ↔ ¬ 𝐸 ≤ (𝑁 mod 𝐸)))
10497, 103mpbid 223 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ¬ 𝐸 ≤ (𝑁 mod 𝐸))
1051, 2, 3, 4gexlem2 18224 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ∈ (1...(𝑁 mod 𝐸)))
106 elfzle2 12574 . . . . . . . . . . . . 13 (𝐸 ∈ (1...(𝑁 mod 𝐸)) → 𝐸 ≤ (𝑁 mod 𝐸))
107105, 106syl 17 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → 𝐸 ≤ (𝑁 mod 𝐸))
1081073expia 1141 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (𝑁 mod 𝐸) ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0𝐸 ≤ (𝑁 mod 𝐸)))
109108impancom 440 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → ((𝑁 mod 𝐸) ∈ ℕ → 𝐸 ≤ (𝑁 mod 𝐸)))
110109con3d 149 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 ) → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ))
111110ex 398 . . . . . . . 8 (𝐺 ∈ Grp → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
112111ad2antrr 706 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → (¬ 𝐸 ≤ (𝑁 mod 𝐸) → ¬ (𝑁 mod 𝐸) ∈ ℕ)))
113104, 112mpid 44 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 ((𝑁 mod 𝐸) · 𝑥) = 0 → ¬ (𝑁 mod 𝐸) ∈ ℕ))
114 elnn0 11518 . . . . . . . 8 ((𝑁 mod 𝐸) ∈ ℕ0 ↔ ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
11599, 114sylib 209 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → ((𝑁 mod 𝐸) ∈ ℕ ∨ (𝑁 mod 𝐸) = 0))
116115ord 880 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (¬ (𝑁 mod 𝐸) ∈ ℕ → (𝑁 mod 𝐸) = 0))
11795, 113, 1163syld 60 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0 → (𝑁 mod 𝐸) = 0))
118 simpr 472 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝐸 ∈ ℕ)
119 simplr 774 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → 𝑁 ∈ ℤ)
120 dvdsval3 15215 . . . . . 6 ((𝐸 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
121118, 119, 120syl2anc 574 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (𝐸𝑁 ↔ (𝑁 mod 𝐸) = 0))
122117, 121sylibrd 250 . . . 4 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ ℕ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
12361, 122sylan2 581 . . 3 (((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) ∧ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
124 eqid 2774 . . . . 5 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
1251, 3, 4, 2, 124gexlem1 18221 . . . 4 (𝐺 ∈ Grp → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
126125adantr 467 . . 3 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → ((𝐸 = 0 ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅) ∨ 𝐸 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }))
12760, 123, 126mpjaodan 970 . 2 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (∀𝑥𝑋 (𝑁 · 𝑥) = 0𝐸𝑁))
1288, 127impbid 203 1 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝐸𝑁 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 383  wo 863  w3a 1098   = wceq 1634  wcel 2148  wral 3064  {crab 3068  c0 4073   class class class wbr 4797  cfv 6042  (class class class)co 6812  cc 10157  cr 10158  0cc0 10159  1c1 10160   · cmul 10164   < clt 10297  cle 10298  cmin 10489  -cneg 10490   / cdiv 10907  cn 11243  0cn0 11516  cz 11601  +crp 12052  ...cfz 12555  cfl 12821   mod cmo 12898  abscabs 14204  cdvds 15211  Basecbs 16084  0gc0g 16328  Grpcgrp 17650  invgcminusg 17651  -gcsg 17652  .gcmg 17768  gExcgex 18172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-inf2 8723  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236  ax-pre-sup 10237
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-er 7917  df-en 8131  df-dom 8132  df-sdom 8133  df-sup 8525  df-inf 8526  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-div 10908  df-nn 11244  df-2 11302  df-3 11303  df-n0 11517  df-z 11602  df-uz 11911  df-rp 12053  df-fz 12556  df-fl 12823  df-mod 12899  df-seq 13031  df-exp 13090  df-cj 14069  df-re 14070  df-im 14071  df-sqrt 14205  df-abs 14206  df-dvds 15212  df-0g 16330  df-mgm 17470  df-sgrp 17512  df-mnd 17523  df-grp 17653  df-minusg 17654  df-sbg 17655  df-mulg 17769  df-gex 18176
This theorem is referenced by:  gexdvds2  18227
  Copyright terms: Public domain W3C validator