MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gex2abl Structured version   Visualization version   GIF version

Theorem gex2abl 18474
Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Base‘𝐺)
gexex.2 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
gex2abl ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)

Proof of Theorem gex2abl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3 𝑋 = (Base‘𝐺)
21a1i 11 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝑋 = (Base‘𝐺))
3 eqidd 2761 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → (+g𝐺) = (+g𝐺))
4 simpl 474 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Grp)
5 simp1l 1240 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐺 ∈ Grp)
6 simp2 1132 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑥𝑋)
7 simp3 1133 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑦𝑋)
8 eqid 2760 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
91, 8grpass 17652 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋𝑦𝑋)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
105, 6, 7, 7, 9syl13anc 1479 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
11 eqid 2760 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
121, 11, 8mulg2 17771 . . . . . . . . . . 11 (𝑦𝑋 → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
137, 12syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
14 simp1r 1241 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐸 ∥ 2)
15 gexex.2 . . . . . . . . . . . 12 𝐸 = (gEx‘𝐺)
16 eqid 2760 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
171, 15, 11, 16gexdvdsi 18218 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑦) = (0g𝐺))
185, 7, 14, 17syl3anc 1477 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (0g𝐺))
1913, 18eqtr3d 2796 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑦) = (0g𝐺))
2019oveq2d 6830 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)) = (𝑥(+g𝐺)(0g𝐺)))
211, 8, 16grprid 17674 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
225, 6, 21syl2anc 696 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2310, 20, 223eqtrd 2798 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = 𝑥)
2423oveq1d 6829 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
251, 11, 8mulg2 17771 . . . . . . 7 (𝑥𝑋 → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
266, 25syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
271, 15, 11, 16gexdvdsi 18218 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑥) = (0g𝐺))
285, 6, 14, 27syl3anc 1477 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (0g𝐺))
2924, 26, 283eqtr2d 2800 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (0g𝐺))
301, 8grpcl 17651 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
315, 6, 7, 30syl3anc 1477 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
321, 15, 11, 16gexdvdsi 18218 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋𝐸 ∥ 2) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
335, 31, 14, 32syl3anc 1477 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
341, 11, 8mulg2 17771 . . . . . 6 ((𝑥(+g𝐺)𝑦) ∈ 𝑋 → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3531, 34syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3629, 33, 353eqtr2d 2800 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
371, 8grpass 17652 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋𝑦𝑋𝑥𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
385, 31, 7, 6, 37syl13anc 1479 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
3936, 38eqtr3d 2796 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
401, 8grpcl 17651 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑥𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
415, 7, 6, 40syl3anc 1477 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
421, 8grplcan 17698 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ (𝑦(+g𝐺)𝑥) ∈ 𝑋 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
435, 31, 41, 31, 42syl13anc 1479 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
4439, 43mpbid 222 . 2 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
452, 3, 4, 44isabld 18426 1 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6814  2c2 11282  cdvds 15202  Basecbs 16079  +gcplusg 16163  0gc0g 16322  Grpcgrp 17643  .gcmg 17761  gExcgex 18165  Abelcabl 18414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-seq 13016  df-dvds 15203  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-mulg 17762  df-gex 18169  df-cmn 18415  df-abl 18416
This theorem is referenced by:  lt6abl  18516
  Copyright terms: Public domain W3C validator