![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > geoserg | Structured version Visualization version GIF version |
Description: The value of the finite geometric series 𝐴↑𝑀 + 𝐴↑(𝑀 + 1) +... + 𝐴↑(𝑁 − 1). (Contributed by Mario Carneiro, 2-May-2016.) |
Ref | Expression |
---|---|
geoserg.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
geoserg.2 | ⊢ (𝜑 → 𝐴 ≠ 1) |
geoserg.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
geoserg.4 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
Ref | Expression |
---|---|
geoserg | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fzofi 12980 | . . . . . 6 ⊢ (𝑀..^𝑁) ∈ Fin | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑀..^𝑁) ∈ Fin) |
3 | ax-1cn 10195 | . . . . . 6 ⊢ 1 ∈ ℂ | |
4 | geoserg.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
5 | subcl 10481 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ) | |
6 | 3, 4, 5 | sylancr 567 | . . . . 5 ⊢ (𝜑 → (1 − 𝐴) ∈ ℂ) |
7 | 4 | adantr 466 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ) |
8 | geoserg.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
9 | elfzouz 12681 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
10 | eluznn0 11959 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) | |
11 | 8, 9, 10 | syl2an 575 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℕ0) |
12 | 7, 11 | expcld 13214 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑𝑘) ∈ ℂ) |
13 | 2, 6, 12 | fsummulc1 14723 | . . . 4 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) · (1 − 𝐴))) |
14 | 3 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ) |
15 | 12, 14, 7 | subdid 10687 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · (1 − 𝐴)) = (((𝐴↑𝑘) · 1) − ((𝐴↑𝑘) · 𝐴))) |
16 | 12 | mulid1d 10258 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · 1) = (𝐴↑𝑘)) |
17 | 7, 11 | expp1d 13215 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (𝐴↑(𝑘 + 1)) = ((𝐴↑𝑘) · 𝐴)) |
18 | 17 | eqcomd 2776 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · 𝐴) = (𝐴↑(𝑘 + 1))) |
19 | 16, 18 | oveq12d 6810 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → (((𝐴↑𝑘) · 1) − ((𝐴↑𝑘) · 𝐴)) = ((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
20 | 15, 19 | eqtrd 2804 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → ((𝐴↑𝑘) · (1 − 𝐴)) = ((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
21 | 20 | sumeq2dv 14640 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) · (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) − (𝐴↑(𝑘 + 1)))) |
22 | oveq2 6800 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐴↑𝑗) = (𝐴↑𝑘)) | |
23 | oveq2 6800 | . . . . 5 ⊢ (𝑗 = (𝑘 + 1) → (𝐴↑𝑗) = (𝐴↑(𝑘 + 1))) | |
24 | oveq2 6800 | . . . . 5 ⊢ (𝑗 = 𝑀 → (𝐴↑𝑗) = (𝐴↑𝑀)) | |
25 | oveq2 6800 | . . . . 5 ⊢ (𝑗 = 𝑁 → (𝐴↑𝑗) = (𝐴↑𝑁)) | |
26 | geoserg.4 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
27 | 4 | adantr 466 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
28 | elfzuz 12544 | . . . . . . 7 ⊢ (𝑗 ∈ (𝑀...𝑁) → 𝑗 ∈ (ℤ≥‘𝑀)) | |
29 | eluznn0 11959 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝑗 ∈ ℕ0) | |
30 | 8, 28, 29 | syl2an 575 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝑗 ∈ ℕ0) |
31 | 27, 30 | expcld 13214 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → (𝐴↑𝑗) ∈ ℂ) |
32 | 22, 23, 24, 25, 26, 31 | telfsumo 14740 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝐴↑𝑘) − (𝐴↑(𝑘 + 1))) = ((𝐴↑𝑀) − (𝐴↑𝑁))) |
33 | 13, 21, 32 | 3eqtrrd 2809 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑀) − (𝐴↑𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴))) |
34 | 4, 8 | expcld 13214 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑀) ∈ ℂ) |
35 | eluznn0 11959 | . . . . . . 7 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑁 ∈ ℕ0) | |
36 | 8, 26, 35 | syl2anc 565 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
37 | 4, 36 | expcld 13214 | . . . . 5 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
38 | 34, 37 | subcld 10593 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑀) − (𝐴↑𝑁)) ∈ ℂ) |
39 | 2, 12 | fsumcl 14671 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) ∈ ℂ) |
40 | geoserg.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 1) | |
41 | 40 | necomd 2997 | . . . . 5 ⊢ (𝜑 → 1 ≠ 𝐴) |
42 | subeq0 10508 | . . . . . . 7 ⊢ ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) | |
43 | 3, 4, 42 | sylancr 567 | . . . . . 6 ⊢ (𝜑 → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
44 | 43 | necon3bid 2986 | . . . . 5 ⊢ (𝜑 → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴)) |
45 | 41, 44 | mpbird 247 | . . . 4 ⊢ (𝜑 → (1 − 𝐴) ≠ 0) |
46 | 38, 39, 6, 45 | divmul3d 11036 | . . 3 ⊢ (𝜑 → ((((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) ↔ ((𝐴↑𝑀) − (𝐴↑𝑁)) = (Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) · (1 − 𝐴)))) |
47 | 33, 46 | mpbird 247 | . 2 ⊢ (𝜑 → (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴)) = Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘)) |
48 | 47 | eqcomd 2776 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝐴↑𝑘) = (((𝐴↑𝑀) − (𝐴↑𝑁)) / (1 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ‘cfv 6031 (class class class)co 6792 Fincfn 8108 ℂcc 10135 0cc0 10137 1c1 10138 + caddc 10140 · cmul 10142 − cmin 10467 / cdiv 10885 ℕ0cn0 11493 ℤ≥cuz 11887 ...cfz 12532 ..^cfzo 12672 ↑cexp 13066 Σcsu 14623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-fz 12533 df-fzo 12673 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-sum 14624 |
This theorem is referenced by: geoser 14805 rplogsumlem2 25394 rpvmasumlem 25396 dchrisum0flblem1 25417 |
Copyright terms: Public domain | W3C validator |