![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > geoisum1c | Structured version Visualization version GIF version |
Description: The infinite sum of 𝐴 · (𝑅↑1) + 𝐴 · (𝑅↑2)... is (𝐴 · 𝑅) / (1 − 𝑅). (Contributed by NM, 2-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
geoisum1c | ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1131 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝐴 ∈ ℂ) | |
2 | simp2 1132 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 𝑅 ∈ ℂ) | |
3 | ax-1cn 10186 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | subcl 10472 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (1 − 𝑅) ∈ ℂ) | |
5 | 3, 2, 4 | sylancr 698 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ∈ ℂ) |
6 | simp3 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (abs‘𝑅) < 1) | |
7 | 1re 10231 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
8 | 7 | ltnri 10338 | . . . . . . 7 ⊢ ¬ 1 < 1 |
9 | abs1 14236 | . . . . . . . . 9 ⊢ (abs‘1) = 1 | |
10 | fveq2 6352 | . . . . . . . . 9 ⊢ (1 = 𝑅 → (abs‘1) = (abs‘𝑅)) | |
11 | 9, 10 | syl5eqr 2808 | . . . . . . . 8 ⊢ (1 = 𝑅 → 1 = (abs‘𝑅)) |
12 | 11 | breq1d 4814 | . . . . . . 7 ⊢ (1 = 𝑅 → (1 < 1 ↔ (abs‘𝑅) < 1)) |
13 | 8, 12 | mtbii 315 | . . . . . 6 ⊢ (1 = 𝑅 → ¬ (abs‘𝑅) < 1) |
14 | 13 | necon2ai 2961 | . . . . 5 ⊢ ((abs‘𝑅) < 1 → 1 ≠ 𝑅) |
15 | 6, 14 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ≠ 𝑅) |
16 | subeq0 10499 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) = 0 ↔ 1 = 𝑅)) | |
17 | 16 | necon3bid 2976 | . . . . 5 ⊢ ((1 ∈ ℂ ∧ 𝑅 ∈ ℂ) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅)) |
18 | 3, 2, 17 | sylancr 698 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((1 − 𝑅) ≠ 0 ↔ 1 ≠ 𝑅)) |
19 | 15, 18 | mpbird 247 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (1 − 𝑅) ≠ 0) |
20 | 1, 2, 5, 19 | divassd 11028 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → ((𝐴 · 𝑅) / (1 − 𝑅)) = (𝐴 · (𝑅 / (1 − 𝑅)))) |
21 | geoisum1 14809 | . . . 4 ⊢ ((𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅↑𝑘) = (𝑅 / (1 − 𝑅))) | |
22 | 21 | 3adant1 1125 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝑅↑𝑘) = (𝑅 / (1 − 𝑅))) |
23 | 22 | oveq2d 6829 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅↑𝑘)) = (𝐴 · (𝑅 / (1 − 𝑅)))) |
24 | nnuz 11916 | . . 3 ⊢ ℕ = (ℤ≥‘1) | |
25 | 1zzd 11600 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℤ) | |
26 | oveq2 6821 | . . . . 5 ⊢ (𝑛 = 𝑘 → (𝑅↑𝑛) = (𝑅↑𝑘)) | |
27 | eqid 2760 | . . . . 5 ⊢ (𝑛 ∈ ℕ ↦ (𝑅↑𝑛)) = (𝑛 ∈ ℕ ↦ (𝑅↑𝑛)) | |
28 | ovex 6841 | . . . . 5 ⊢ (𝑅↑𝑘) ∈ V | |
29 | 26, 27, 28 | fvmpt 6444 | . . . 4 ⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
30 | 29 | adantl 473 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
31 | nnnn0 11491 | . . . 4 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
32 | expcl 13072 | . . . 4 ⊢ ((𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑅↑𝑘) ∈ ℂ) | |
33 | 2, 31, 32 | syl2an 495 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ ℕ) → (𝑅↑𝑘) ∈ ℂ) |
34 | 1nn0 11500 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
35 | 34 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → 1 ∈ ℕ0) |
36 | elnnuz 11917 | . . . . . 6 ⊢ (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ≥‘1)) | |
37 | 36, 30 | sylan2br 494 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) ∧ 𝑘 ∈ (ℤ≥‘1)) → ((𝑛 ∈ ℕ ↦ (𝑅↑𝑛))‘𝑘) = (𝑅↑𝑘)) |
38 | 2, 6, 35, 37 | geolim2 14801 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅))) |
39 | seqex 12997 | . . . . 5 ⊢ seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ V | |
40 | ovex 6841 | . . . . 5 ⊢ ((𝑅↑1) / (1 − 𝑅)) ∈ V | |
41 | 39, 40 | breldm 5484 | . . . 4 ⊢ (seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ⇝ ((𝑅↑1) / (1 − 𝑅)) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ dom ⇝ ) |
42 | 38, 41 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → seq1( + , (𝑛 ∈ ℕ ↦ (𝑅↑𝑛))) ∈ dom ⇝ ) |
43 | 24, 25, 30, 33, 42, 1 | isummulc2 14692 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → (𝐴 · Σ𝑘 ∈ ℕ (𝑅↑𝑘)) = Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘))) |
44 | 20, 23, 43 | 3eqtr2rd 2801 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (abs‘𝑅) < 1) → Σ𝑘 ∈ ℕ (𝐴 · (𝑅↑𝑘)) = ((𝐴 · 𝑅) / (1 − 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 class class class wbr 4804 ↦ cmpt 4881 dom cdm 5266 ‘cfv 6049 (class class class)co 6813 ℂcc 10126 0cc0 10128 1c1 10129 + caddc 10131 · cmul 10133 < clt 10266 − cmin 10458 / cdiv 10876 ℕcn 11212 ℕ0cn0 11484 ℤ≥cuz 11879 seqcseq 12995 ↑cexp 13054 abscabs 14173 ⇝ cli 14414 Σcsu 14615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-rp 12026 df-fz 12520 df-fzo 12660 df-fl 12787 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-rlim 14419 df-sum 14616 |
This theorem is referenced by: 0.999... 14811 0.999...OLD 14812 |
Copyright terms: Public domain | W3C validator |