MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoihalfsum Structured version   Visualization version   GIF version

Theorem geoihalfsum 14820
Description: Prove that the infinite geometric series of 1/2, 1/2 + 1/4 + 1/8 + ... = 1. Uses geoisum1 14816. This is a representation of .111... in binary with an infinite number of 1's. Theorem 0.999... 14818 proves a similar claim for .999... in base 10. (Contributed by David A. Wheeler, 4-Jan-2017.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
geoihalfsum Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1

Proof of Theorem geoihalfsum
StepHypRef Expression
1 2cn 11292 . . . . 5 2 ∈ ℂ
21a1i 11 . . . 4 (𝑘 ∈ ℕ → 2 ∈ ℂ)
3 2ne0 11314 . . . . 5 2 ≠ 0
43a1i 11 . . . 4 (𝑘 ∈ ℕ → 2 ≠ 0)
5 nnz 11600 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
62, 4, 5exprecd 13222 . . 3 (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
76sumeq2i 14636 . 2 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = Σ𝑘 ∈ ℕ (1 / (2↑𝑘))
8 halfcn 11448 . . . 4 (1 / 2) ∈ ℂ
9 halfre 11447 . . . . . 6 (1 / 2) ∈ ℝ
10 halfge0 11450 . . . . . 6 0 ≤ (1 / 2)
11 absid 14243 . . . . . 6 (((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2)) → (abs‘(1 / 2)) = (1 / 2))
129, 10, 11mp2an 664 . . . . 5 (abs‘(1 / 2)) = (1 / 2)
13 halflt1 11451 . . . . 5 (1 / 2) < 1
1412, 13eqbrtri 4805 . . . 4 (abs‘(1 / 2)) < 1
15 geoisum1 14816 . . . 4 (((1 / 2) ∈ ℂ ∧ (abs‘(1 / 2)) < 1) → Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2))))
168, 14, 15mp2an 664 . . 3 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = ((1 / 2) / (1 − (1 / 2)))
17 1mhlfehlf 11452 . . . 4 (1 − (1 / 2)) = (1 / 2)
1817oveq2i 6803 . . 3 ((1 / 2) / (1 − (1 / 2))) = ((1 / 2) / (1 / 2))
19 ax-1cn 10195 . . . . 5 1 ∈ ℂ
20 ax-1ne0 10206 . . . . 5 1 ≠ 0
2119, 1, 20, 3divne0i 10974 . . . 4 (1 / 2) ≠ 0
228, 21dividi 10959 . . 3 ((1 / 2) / (1 / 2)) = 1
2316, 18, 223eqtri 2796 . 2 Σ𝑘 ∈ ℕ ((1 / 2)↑𝑘) = 1
247, 23eqtr3i 2794 1 Σ𝑘 ∈ ℕ (1 / (2↑𝑘)) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1630  wcel 2144  wne 2942   class class class wbr 4784  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  1c1 10138   < clt 10275  cle 10276  cmin 10467   / cdiv 10885  cn 11221  2c2 11271  cexp 13066  abscabs 14181  Σcsu 14623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-rlim 14427  df-sum 14624
This theorem is referenced by:  omssubadd  30696
  Copyright terms: Public domain W3C validator