![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > genpcl | Structured version Visualization version GIF version |
Description: Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
genp.1 | ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) |
genp.2 | ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) |
genpcl.3 | ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ𝐺𝑓) <Q (ℎ𝐺𝑔))) |
genpcl.4 | ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) |
genpcl.5 | ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) |
Ref | Expression |
---|---|
genpcl | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ P) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | genp.1 | . . . 4 ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) | |
2 | genp.2 | . . . 4 ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) | |
3 | 1, 2 | genpn0 9988 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) |
4 | 1, 2 | genpss 9989 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) |
5 | vex 3331 | . . . . . 6 ⊢ 𝑥 ∈ V | |
6 | vex 3331 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | genpcl.3 | . . . . . 6 ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ𝐺𝑓) <Q (ℎ𝐺𝑔))) | |
8 | 5, 6, 7 | caovord 6998 | . . . . 5 ⊢ (𝑧 ∈ Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
9 | genpcl.4 | . . . . 5 ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) | |
10 | 1, 2, 8, 9 | genpnnp 9990 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ¬ (𝐴𝐹𝐵) = Q) |
11 | dfpss2 3822 | . . . 4 ⊢ ((𝐴𝐹𝐵) ⊊ Q ↔ ((𝐴𝐹𝐵) ⊆ Q ∧ ¬ (𝐴𝐹𝐵) = Q)) | |
12 | 4, 10, 11 | sylanbrc 701 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊊ Q) |
13 | genpcl.5 | . . . . . . 7 ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) | |
14 | 1, 2, 13 | genpcd 9991 | . . . . . 6 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
15 | 14 | alrimdv 1994 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) |
16 | vex 3331 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
17 | vex 3331 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
18 | 16, 17, 7 | caovord 6998 | . . . . . 6 ⊢ (𝑣 ∈ Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤))) |
19 | 16, 17, 9 | caovcom 6984 | . . . . . 6 ⊢ (𝑧𝐺𝑤) = (𝑤𝐺𝑧) |
20 | 1, 2, 18, 19 | genpnmax 9992 | . . . . 5 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)) |
21 | 15, 20 | jcad 556 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))) |
22 | 21 | ralrimiv 3091 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)) |
23 | 3, 12, 22 | jca31 558 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((∅ ⊊ (𝐴𝐹𝐵) ∧ (𝐴𝐹𝐵) ⊊ Q) ∧ ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))) |
24 | elnp 9972 | . 2 ⊢ ((𝐴𝐹𝐵) ∈ P ↔ ((∅ ⊊ (𝐴𝐹𝐵) ∧ (𝐴𝐹𝐵) ⊊ Q) ∧ ∀𝑓 ∈ (𝐴𝐹𝐵)(∀𝑥(𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)) ∧ ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥))) | |
25 | 23, 24 | sylibr 224 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ P) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1618 = wceq 1620 ∈ wcel 2127 {cab 2734 ∀wral 3038 ∃wrex 3039 ⊆ wss 3703 ⊊ wpss 3704 ∅c0 4046 class class class wbr 4792 (class class class)co 6801 ↦ cmpt2 6803 Qcnq 9837 <Q cltq 9843 Pcnp 9844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-oadd 7721 df-omul 7722 df-er 7899 df-ni 9857 df-mi 9859 df-lti 9860 df-ltpq 9895 df-enq 9896 df-nq 9897 df-ltnq 9903 df-np 9966 |
This theorem is referenced by: addclpr 10003 mulclpr 10005 |
Copyright terms: Public domain | W3C validator |