![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gencbval | Structured version Visualization version GIF version |
Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) |
Ref | Expression |
---|---|
gencbval.1 | ⊢ 𝐴 ∈ V |
gencbval.2 | ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) |
gencbval.3 | ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) |
gencbval.4 | ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
Ref | Expression |
---|---|
gencbval | ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gencbval.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | gencbval.2 | . . . . 5 ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 307 | . . . 4 ⊢ (𝐴 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | gencbval.3 | . . . 4 ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | |
5 | gencbval.4 | . . . 4 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | |
6 | 1, 3, 4, 5 | gencbvex 3281 | . . 3 ⊢ (∃𝑥(𝜒 ∧ ¬ 𝜑) ↔ ∃𝑦(𝜃 ∧ ¬ 𝜓)) |
7 | exanali 1826 | . . 3 ⊢ (∃𝑥(𝜒 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥(𝜒 → 𝜑)) | |
8 | exanali 1826 | . . 3 ⊢ (∃𝑦(𝜃 ∧ ¬ 𝜓) ↔ ¬ ∀𝑦(𝜃 → 𝜓)) | |
9 | 6, 7, 8 | 3bitr3i 290 | . 2 ⊢ (¬ ∀𝑥(𝜒 → 𝜑) ↔ ¬ ∀𝑦(𝜃 → 𝜓)) |
10 | 9 | con4bii 310 | 1 ⊢ (∀𝑥(𝜒 → 𝜑) ↔ ∀𝑦(𝜃 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 = wceq 1523 ∃wex 1744 ∈ wcel 2030 Vcvv 3231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-11 2074 ax-12 2087 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |