![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gen11 | Structured version Visualization version GIF version |
Description: Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1895 is gen11 39158 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gen11.1 | ⊢ ( 𝜑 ▶ 𝜓 ) |
Ref | Expression |
---|---|
gen11 | ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gen11.1 | . . . 4 ⊢ ( 𝜑 ▶ 𝜓 ) | |
2 | dfvd1imp 39108 | . . . 4 ⊢ (( 𝜑 ▶ 𝜓 ) → (𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝜑 → 𝜓) |
4 | 3 | alrimiv 1895 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
5 | dfvd1impr 39109 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ( 𝜑 ▶ ∀𝑥𝜓 )) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 ( wvd1 39102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 |
This theorem depends on definitions: df-bi 197 df-vd1 39103 |
This theorem is referenced by: trsspwALT 39362 snssiALTVD 39376 sstrALT2VD 39383 elex2VD 39387 elex22VD 39388 tpid3gVD 39391 trsbcVD 39427 sbcssgVD 39433 csbingVD 39434 onfrALTVD 39441 csbsngVD 39443 csbxpgVD 39444 csbrngVD 39446 csbunigVD 39448 csbfv12gALTVD 39449 ax6e2eqVD 39457 ax6e2ndeqVD 39459 sspwimpVD 39469 sspwimpcfVD 39471 |
Copyright terms: Public domain | W3C validator |