MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchcda1 Structured version   Visualization version   GIF version

Theorem gchcda1 9670
Description: An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
gchcda1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 1𝑜) ≈ 𝐴)

Proof of Theorem gchcda1
StepHypRef Expression
1 1onn 7888 . . . . . 6 1𝑜 ∈ ω
21a1i 11 . . . . 5 𝐴 ∈ Fin → 1𝑜 ∈ ω)
3 cdadom3 9202 . . . . 5 ((𝐴 ∈ GCH ∧ 1𝑜 ∈ ω) → 𝐴 ≼ (𝐴 +𝑐 1𝑜))
42, 3sylan2 492 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≼ (𝐴 +𝑐 1𝑜))
5 simpr 479 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
6 nnfi 8318 . . . . . . . . 9 (1𝑜 ∈ ω → 1𝑜 ∈ Fin)
71, 6mp1i 13 . . . . . . . 8 𝐴 ∈ Fin → 1𝑜 ∈ Fin)
8 fidomtri2 9010 . . . . . . . 8 ((𝐴 ∈ GCH ∧ 1𝑜 ∈ Fin) → (𝐴 ≼ 1𝑜 ↔ ¬ 1𝑜𝐴))
97, 8sylan2 492 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1𝑜 ↔ ¬ 1𝑜𝐴))
101, 6mp1i 13 . . . . . . . 8 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1𝑜 ∈ Fin)
11 domfi 8346 . . . . . . . . 9 ((1𝑜 ∈ Fin ∧ 𝐴 ≼ 1𝑜) → 𝐴 ∈ Fin)
1211ex 449 . . . . . . . 8 (1𝑜 ∈ Fin → (𝐴 ≼ 1𝑜𝐴 ∈ Fin))
1310, 12syl 17 . . . . . . 7 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ 1𝑜𝐴 ∈ Fin))
149, 13sylbird 250 . . . . . 6 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ 1𝑜𝐴𝐴 ∈ Fin))
155, 14mt3d 140 . . . . 5 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 1𝑜𝐴)
16 canthp1 9668 . . . . 5 (1𝑜𝐴 → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)
1715, 16syl 17 . . . 4 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)
184, 17jca 555 . . 3 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ≼ (𝐴 +𝑐 1𝑜) ∧ (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴))
19 gchen1 9639 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ (𝐴 +𝑐 1𝑜) ∧ (𝐴 +𝑐 1𝑜) ≺ 𝒫 𝐴)) → 𝐴 ≈ (𝐴 +𝑐 1𝑜))
2018, 19mpdan 705 . 2 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 +𝑐 1𝑜))
2120ensymd 8172 1 ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 +𝑐 1𝑜) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2139  𝒫 cpw 4302   class class class wbr 4804  (class class class)co 6813  ωcom 7230  1𝑜c1o 7722  cen 8118  cdom 8119  csdm 8120  Fincfn 8121   +𝑐 ccda 9181  GCHcgch 9634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-oi 8580  df-card 8955  df-cda 9182  df-gch 9635
This theorem is referenced by:  gchinf  9671  gchcdaidm  9682  gchpwdom  9684
  Copyright terms: Public domain W3C validator