![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchaclem | Structured version Visualization version GIF version |
Description: Lemma for gchac 9703 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
gchaclem.1 | ⊢ (𝜑 → ω ≼ 𝐴) |
gchaclem.3 | ⊢ (𝜑 → 𝒫 𝐶 ∈ GCH) |
gchaclem.4 | ⊢ (𝜑 → (𝐴 ≼ 𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) |
Ref | Expression |
---|---|
gchaclem | ⊢ (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gchaclem.4 | . . . 4 ⊢ (𝜑 → (𝐴 ≼ 𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) | |
2 | 1 | simpld 478 | . . 3 ⊢ (𝜑 → 𝐴 ≼ 𝐶) |
3 | reldom 8113 | . . . . . 6 ⊢ Rel ≼ | |
4 | 3 | brrelex2i 5298 | . . . . 5 ⊢ (𝐴 ≼ 𝐶 → 𝐶 ∈ V) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ V) |
6 | canth2g 8268 | . . . 4 ⊢ (𝐶 ∈ V → 𝐶 ≺ 𝒫 𝐶) | |
7 | sdomdom 8135 | . . . 4 ⊢ (𝐶 ≺ 𝒫 𝐶 → 𝐶 ≼ 𝒫 𝐶) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐶 ≼ 𝒫 𝐶) |
9 | domtr 8160 | . . 3 ⊢ ((𝐴 ≼ 𝐶 ∧ 𝐶 ≼ 𝒫 𝐶) → 𝐴 ≼ 𝒫 𝐶) | |
10 | 2, 8, 9 | syl2anc 693 | . 2 ⊢ (𝜑 → 𝐴 ≼ 𝒫 𝐶) |
11 | gchaclem.3 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐶 ∈ GCH) | |
12 | 11 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → 𝒫 𝐶 ∈ GCH) |
13 | gchaclem.1 | . . . . . . . 8 ⊢ (𝜑 → ω ≼ 𝐴) | |
14 | domtr 8160 | . . . . . . . 8 ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ≼ 𝐶) → ω ≼ 𝐶) | |
15 | 13, 2, 14 | syl2anc 693 | . . . . . . 7 ⊢ (𝜑 → ω ≼ 𝐶) |
16 | 15 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → ω ≼ 𝐶) |
17 | pwcdaidm 9217 | . . . . . 6 ⊢ (ω ≼ 𝐶 → (𝒫 𝐶 +𝑐 𝒫 𝐶) ≈ 𝒫 𝐶) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 +𝑐 𝒫 𝐶) ≈ 𝒫 𝐶) |
19 | simpr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → 𝐵 ≼ 𝒫 𝒫 𝐶) | |
20 | gchdomtri 9651 | . . . . 5 ⊢ ((𝒫 𝐶 ∈ GCH ∧ (𝒫 𝐶 +𝑐 𝒫 𝐶) ≈ 𝒫 𝐶 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶)) | |
21 | 12, 18, 19, 20 | syl3anc 1474 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶)) |
22 | 21 | ex 448 | . . 3 ⊢ (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → (𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶))) |
23 | pwdom 8266 | . . . . 5 ⊢ (𝐴 ≼ 𝐶 → 𝒫 𝐴 ≼ 𝒫 𝐶) | |
24 | domtr 8160 | . . . . . 6 ⊢ ((𝒫 𝐴 ≼ 𝒫 𝐶 ∧ 𝒫 𝐶 ≼ 𝐵) → 𝒫 𝐴 ≼ 𝐵) | |
25 | 24 | ex 448 | . . . . 5 ⊢ (𝒫 𝐴 ≼ 𝒫 𝐶 → (𝒫 𝐶 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝐵)) |
26 | 2, 23, 25 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝒫 𝐶 ≼ 𝐵 → 𝒫 𝐴 ≼ 𝐵)) |
27 | 1 | simprd 483 | . . . 4 ⊢ (𝜑 → (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵)) |
28 | 26, 27 | jaod 394 | . . 3 ⊢ (𝜑 → ((𝒫 𝐶 ≼ 𝐵 ∨ 𝐵 ≼ 𝒫 𝐶) → 𝒫 𝐴 ≼ 𝐵)) |
29 | 22, 28 | syld 47 | . 2 ⊢ (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵)) |
30 | 10, 29 | jca 556 | 1 ⊢ (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 ∈ wcel 2143 Vcvv 3348 𝒫 cpw 4294 class class class wbr 4783 (class class class)co 6791 ωcom 7210 ≈ cen 8104 ≼ cdom 8105 ≺ csdm 8106 +𝑐 ccda 9189 GCHcgch 9642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-ral 3064 df-rex 3065 df-reu 3066 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-int 4609 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-om 7211 df-1st 7313 df-2nd 7314 df-1o 7711 df-2o 7712 df-er 7894 df-map 8009 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-wdom 8618 df-card 8963 df-cda 9190 df-gch 9643 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |