MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchaclem Structured version   Visualization version   GIF version

Theorem gchaclem 9485
Description: Lemma for gchac 9488 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
gchaclem.1 (𝜑 → ω ≼ 𝐴)
gchaclem.3 (𝜑 → 𝒫 𝐶 ∈ GCH)
gchaclem.4 (𝜑 → (𝐴𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵)))
Assertion
Ref Expression
gchaclem (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵)))

Proof of Theorem gchaclem
StepHypRef Expression
1 gchaclem.4 . . . 4 (𝜑 → (𝐴𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵)))
21simpld 475 . . 3 (𝜑𝐴𝐶)
3 reldom 7946 . . . . . 6 Rel ≼
43brrelex2i 5149 . . . . 5 (𝐴𝐶𝐶 ∈ V)
52, 4syl 17 . . . 4 (𝜑𝐶 ∈ V)
6 canth2g 8099 . . . 4 (𝐶 ∈ V → 𝐶 ≺ 𝒫 𝐶)
7 sdomdom 7968 . . . 4 (𝐶 ≺ 𝒫 𝐶𝐶 ≼ 𝒫 𝐶)
85, 6, 73syl 18 . . 3 (𝜑𝐶 ≼ 𝒫 𝐶)
9 domtr 7994 . . 3 ((𝐴𝐶𝐶 ≼ 𝒫 𝐶) → 𝐴 ≼ 𝒫 𝐶)
102, 8, 9syl2anc 692 . 2 (𝜑𝐴 ≼ 𝒫 𝐶)
11 gchaclem.3 . . . . . 6 (𝜑 → 𝒫 𝐶 ∈ GCH)
1211adantr 481 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → 𝒫 𝐶 ∈ GCH)
13 gchaclem.1 . . . . . . . 8 (𝜑 → ω ≼ 𝐴)
14 domtr 7994 . . . . . . . 8 ((ω ≼ 𝐴𝐴𝐶) → ω ≼ 𝐶)
1513, 2, 14syl2anc 692 . . . . . . 7 (𝜑 → ω ≼ 𝐶)
1615adantr 481 . . . . . 6 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → ω ≼ 𝐶)
17 pwcdaidm 9002 . . . . . 6 (ω ≼ 𝐶 → (𝒫 𝐶 +𝑐 𝒫 𝐶) ≈ 𝒫 𝐶)
1816, 17syl 17 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶 +𝑐 𝒫 𝐶) ≈ 𝒫 𝐶)
19 simpr 477 . . . . 5 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → 𝐵 ≼ 𝒫 𝒫 𝐶)
20 gchdomtri 9436 . . . . 5 ((𝒫 𝐶 ∈ GCH ∧ (𝒫 𝐶 +𝑐 𝒫 𝐶) ≈ 𝒫 𝐶𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶))
2112, 18, 19, 20syl3anc 1324 . . . 4 ((𝜑𝐵 ≼ 𝒫 𝒫 𝐶) → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶))
2221ex 450 . . 3 (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → (𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶)))
23 pwdom 8097 . . . . 5 (𝐴𝐶 → 𝒫 𝐴 ≼ 𝒫 𝐶)
24 domtr 7994 . . . . . 6 ((𝒫 𝐴 ≼ 𝒫 𝐶 ∧ 𝒫 𝐶𝐵) → 𝒫 𝐴𝐵)
2524ex 450 . . . . 5 (𝒫 𝐴 ≼ 𝒫 𝐶 → (𝒫 𝐶𝐵 → 𝒫 𝐴𝐵))
262, 23, 253syl 18 . . . 4 (𝜑 → (𝒫 𝐶𝐵 → 𝒫 𝐴𝐵))
271simprd 479 . . . 4 (𝜑 → (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴𝐵))
2826, 27jaod 395 . . 3 (𝜑 → ((𝒫 𝐶𝐵𝐵 ≼ 𝒫 𝐶) → 𝒫 𝐴𝐵))
2922, 28syld 47 . 2 (𝜑 → (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵))
3010, 29jca 554 1 (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  wcel 1988  Vcvv 3195  𝒫 cpw 4149   class class class wbr 4644  (class class class)co 6635  ωcom 7050  cen 7937  cdom 7938  csdm 7939   +𝑐 ccda 8974  GCHcgch 9427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-1o 7545  df-2o 7546  df-er 7727  df-map 7844  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-wdom 8449  df-card 8750  df-cda 8975  df-gch 9428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator